IMA5 2018/2019 P24

De Wiki de Projets IMA


Présentation générale

Description

Les observateurs sont généralement utilisés pour estimer des grandeurs mais en présence de bruits, leur performance se trouve dégradée. On a alors recours au filtrage de Kalman. Son application en diagnostic a permis la surveillance de plusieurs systèmes industriels. En effet, quand un défaut apparaît dans un système, il est crucial de le détecter tôt et de le corriger pour éviter sa propagation qui pourra endommager le système. Ce projet a pour but de mettre en œuvre un filtre de Kalman sur le robotino en vue de détecter l’apparition des défauts sur ce dernier. On commencera par apprendre et maîtriser le fonctionnement du filtrage de Kalman et la commande du Robotino avec Matlab. Suivra l’implémentation du filtre de Kalman pour la détection de défauts.

Figure 1 : Robotino

Objectifs

L'objectif principal de ce projet est la mise en œuvre un filtre de Kalman pour la surveillance d’un robot mobile. En effet, grâce à la mise en oeuvre de ce filtre de Kalman sur le Robotino qui est un robot mobile, il sera donc possible de détecter des défauts.

Préparation du projet

Cahier des charges

Choix techniques : matériel et logiciel

Lors de ce projet, les choix techniques sont les suivants :

  • Un robot mobile : Le Robotino
  • Le logiciel RobotinoView3
  • Matlab Simulink

Liste des tâches à effectuer

Les tâches à effectuer sont les suivantes :

  • Recherches bibliographiques et état de l'art
  • Prise en main du Robotino
  • Modélisation du système
  • Recherches Filtre de Kalman
  • Expérimentations sur les défauts

Calendrier prévisionnel

Réalisation du Projet

Journal de Bord

Semaine 1

Lors de cette première semaine, j'ai rencontré plusieurs fois mon tuteur de Projet, les points suivants ont été fixé :

  • Organisation du PFE ==> Plusieurs réunions par semaine
  • Travail préliminaire à réaliser
  • Les notions à bien revoir
  • Définition de l'objectif principal de ce projet

Semaine 2

Lors de cette semaine de travail, je me suis attardé sur les points suivants :

  • Prise en main du Robotino
  • Découverte et commande du Robotino à l'aide de Matlab
  • Réalisation de parcours
  • Recherche sur l'établissement du modèle du Robotino
  • Recherche sur le filtre de Kalman

Semaine 3

Lors de ce début de semaine, la réalisation des tâches suivantes a été débuté :

  • Recherches approfondies pour valider ce modèle
  • Utilisation de techniques mathématiques pour valider ce modèle

Rencontre avec M. Pekpe en ce début de semaine les points qui se sont dégagés sont les suivants :

  • Expositions de mes idées d'expérimentation
  • Clarification sur certains points du projet
  • Continuer de documenter mon travail

Semaine 4

En ce début de semaine 4, j'ai commencé les tâches suivantes :

  • Travail su la méthode des résidus
  • Rédaction de documents pour le fonctionnement de mes premières expérimentations

Semaine 5

Lors de cette semaine voici les tâches que j'ai continué et commencé :

  • Travail sur la méthode des résidus
  • Adaptation du modèle
  • Travail sur le filtrage de Kalman, plus particulièrement sur un système plus simple

Semaine 6

Lors de cette semaine, le travail entamé est le suivant :

  • Travail sur l'algorithme de Kalman
  • Création d'un fichier pour initialiser la position du Robot avant l'utilisation de celui-ci
  • Réalisation d'un filtrage de Kalman sur un signal sinusoïdal

Semaine 7

Lors de cette semaine, le travail principal sera le suivant :

  • Calcul des paramètres pour le filtrage de Kalman sur le Robotino
  • Test d'implémentation du filtrage

Une implémentation du filtre a été réalisé sur le Robotino, mais les sorties n'étant que simulées une erreur conséquente s'est installé dans ma prédiction. L'objectif de mes prochaines étapes est donc de ne plus avoir ce problème de bruit.

Semaine 8

Les différentes tâches à réaliser pour cette semaine sont les suivantes :

  • Exploitation du bruit pour avoir un meilleur filtrage
  • Travail avec la méthode des sous espaces pour pouvoir identifier la matrice de perturbation
  • Une modification du modèle est donc à prévoir

Description des concepts clés du filtrage de Kalman

Le filtre de Kalman est un filtre à réponse impulsionnelle infinie c'est-à-dire que c'est un filtre qui se base sur les valeurs du signal d'entrée mais aussi des valeurs antérieurs de celui-ci. Le filtre de Kalman est donc une méthode permettant d'estimer les différents paramètres d'un système qui évolue dans le temps, tout cela à partir de mesures bruités. Le filtre de Kalman est donc utilisé dans de nombreux domaines tels que le traitement d'images, les radars...

Ce filtre est capable de prédire des paramètres du système, et de rectifier des erreurs. Grâce au filtre de Kalman, il est possible d'avoir des erreurs raisonnables et ainsi d'avoir des estimations correctes.

Il y a deux grandes étapes concernant le fonctionnement du filtre de Kalman :

  • La première étape est la prédiction de l'estimation en fonction du modèle du système. De plus, dans cette étape, nous avons l'état prédit et l'estimation prédite de la covariance.
  • La seconde étape vise à faire la mise à jour de cette prédiction à l'aide des nouvelles mesures. Alors que dans cette seconde étape, nous avons une équation d'innovation, la covariance de l'innovation, le gain de Kalman mis à jour, ainsi que l'état de mis à jour et la covariance de mis à jour. Finalement, l'objectif de cette seconde étape est d'avoir une estimation bien plus précise.

Comment identifier le modèle du Robotino ?

L’identification est la détermination du modèle d’un système sous forme de représentation d’état de manière numérique à partir des mesures d’entrée et de sorties. Concernant l'identification du modèle, nous utilisons la méthode des sous espaces. On considère le système linéaire à temps invariant suivant :


A l'aide de ce modèle, il faut rechercher une équivalence permettant d'avoir les matrices A, B, C, D. Nous déduisons que la réalisation équivalente peut être la suivante :

Nous obtenons alors des estimations des matrices d'observabilité étendue et de séquences suivantes :

Finalement, nous obtenons le système suivant :

Comment valider ce modèle ?

Concernant la validation du modèle, il faut utiliser la méthode des moindres carrées. La méthode des moindres carrés permet de sélectionner parmi ces fonctions celle qui reproduit le mieux les données expérimentales. On parle dans ce cas d’ajustement par la méthode des moindres carrés. La formule de cette méthode est la suivante :

Filtrage de Kalman d'un système simple

Utilisation d'un signal sur mon premier modèle

Explication sur la partie commande de mon robotino

Mise en place de mon filtre sur le Robot sur la partie simulée

Documents Rendus