IMA4 2017/2018 P25 : Essaim de Robots

De Wiki de Projets IMA
Révision datée du 14 mars 2018 à 18:46 par Bcanu (discussion | contributions) (InfraRouge)


Présentation générale

Projet réalisé par : Benjamin Canu et Ganix Etcheguibel.

Description

Dans ce projet nous devons concevoir des mini-robots qui se comportent comme un essaim. Le principe de l'essaim se base sur les règles d'autonomie et de faible intelligence de chaque individu, ainsi que sur un faible de cout de production à l'individu et une robustesse à la variation de ceux-ci dans le groupe :

  • Autonomie énergétique, sensorimotrice et décisionnelle.
  • Faible intelligence : Aucune (ou très peu de communication), aucune connaissance de l'environnement global ou de l'ensemble du groupe, interactions uniquement avec l'environnement local.

Pour notre projet, nous prendrons comme but de réaliser la cartographie d'une pièce intérieure (sol plat et lisse, pas de perturbation).

Objectifs

  • Adaptation du châssis et de la carte électronique fournie à partir d'un ancien projet IMA.
  • Mise en place, sur ce châssis, de capteurs et LEDs.
  • Programmation des algorithmes de calcul des robots pour le maintient de la distance dans l'essaim, et l'évitement des obstacles.
  • Ajout des dispositifs nécessaires à la prise de mesure pour la cartographie.

Analyse du projet

Analyse du premier concurrent

Projet de robots vibrants développé à l’Université d’Harvard, est un ensemble de 1024 robots montés sur des tiges vibrantes, se plaçant sur le sol selon la forme donnée en image-ordre.

Ce groupe de robots permet la réalisation de figures complexes au sol, cependant leur moyen de mobilité fixe une vitesse fortement réduite (11h/forme) et donc n’est pas vraiment adaptée à l’analyse d’une pièce.

https://theconversation.com/thousand-robot-swarm-assembles-itself-into-shapes-30548

Analyse du second concurrent

Projet de drones volants, par GRASP Lab à l’Université de Pennsylvanie est un essaim de drones volants pouvant réaliser des figures, mouvements et organisations complexes.

Les drones permettent, si munis de caméra, de visualiser la pièce grâce à une vue de dessus rapide à mettre en place. Cependant cette vision de la cartographie n’est pas identique, car elle ne donne pas les même informations que les drones roulants (e.g.: un table vue de dessous est quatre pieds, vue de dessus elle est un rectangle). De plus, les drones peuvent cartographier en présence de personnes, si un traitement poussé est effectué en suite, mais il ne peuvent opérer dans une salle où l’air n’est pas stable.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.423.203&rep=rep1&type=pdf

Scénario d'usage du produit ou du concept envisagé

Ces robots pourront être utilisés pour la cartographie de salles en intérieur.

Leur déploiement permettra ainsi, lors de l’évitement, d’enregistrer la position et la forme des obstacles et différents objets entreposés sans en connaître au préalable les paramètres.

Réponse à la question difficile

Aucune question difficile n'a été abordée lors de la présentation.


Préparation du projet

Choix techniques : matériel et logiciel (Ici pour deux robots)

Description Fabricant Référence Fabricant Fournisseur Quantité Lien fournisseur
Microcontrôleur Atmel ATMEGA328P-MU Mouser 2 https://www.mouser.fr/ProductDetail/Microchip-Technology-Atmel/ATMEGA328P-MU?qs=sGAEpiMZZMvqv2n3s2xjscfa4zIkTHJIR0ZBr3z9ETo%3d
Condensateur 100nF Kemet C0201C104K9PACTU Farnell 16 http://fr.farnell.com/kemet/c0201c104k9pactu/condensateur-mlcc-x5r-100nf-6/dp/1907036?st=Condensateur%20100nF
Condensateur 10uF Wurth Electronik 885012106006 Farnell 2 http://fr.farnell.com/wurth-elektronik/885012106006/condesateur-mlcc-x5r-10uf-6-3v/dp/2495147
Condensateur 22pF AVX 06036A220KAT2A Mouser 4 http://www.mouser.fr/ProductDetail/AVX/06036A220KAT2A/?qs=sGAEpiMZZMs0AnBnWHyRQKdiqyDPVQdATEC6RfUr2zQ%3d
Rectifier Diode Vishay Semiconductors GL34G-E3/83 Mouser 4 http://www.mouser.fr/ProductDetail/Vishay-Semiconductors/GL34G-E3-83/?qs=sGAEpiMZZMutXGli8Ay4kH9ZXA1Qtv9UOwbhSBXDb18%3d
Quartz ECS ECS-160-20-3X-TR Mouser 2 http://www.mouser.fr/ProductDetail/ECS/ECS-160-20-3X-TR/?qs=sGAEpiMZZMvAbnEMxb34PZ9bYWrwSXiB
Servo moteur Olimex Ltd. MS-R-6-40 Mouser 4 https://www.mouser.fr/ProductDetail/Olimex-Ltd/MS-R-6-40?qs=sGAEpiMZZMvuFyKEiodORqSYMvGj9ACrspkI9Ywy%252bNs%3d
Blue LED KingBright APHB1608LVBDZGKC Mouser 4 http://www.mouser.fr/ProductDetail/Kingbright/APHB1608LVBDZGKC/?qs=sGAEpiMZZMseGfSY3csMkcwbVq2rhH5Mu7mYFMpmGAhvgXBy5N%252b7kA%3d%3d
Green LED KingBright APT1608SGC Mouser 4 http://www.mouser.fr/ProductDetail/Kingbright/APT1608SGC/?qs=sGAEpiMZZMseGfSY3csMkeytxqHAv00AcF6Dm1xSW98%3d
Red LED KingBright APHB1608ZGSURKC Mouser 2 http://www.mouser.fr/ProductDetail/Kingbright/APHB1608ZGSURKC/?qs=sGAEpiMZZMseGfSY3csMkdKNYmh3uDipxtOOfF4A5sw%3d
Yellow LED KingBright APT1608SYCK Mouser 2 http://www.mouser.fr/ProductDetail/Kingbright/APT1608SYCK/?qs=sGAEpiMZZMsQtlBhqKq43Wn3QbM4OLG1
Orange LED KingBright APTD1608SECK Mouser 2 http://www.mouser.fr/ProductDetail/Kingbright/APTD1608SECK/?qs=sGAEpiMZZMt82OzCyDsLFNLWq0AjqZj1Bh9swU8LC68%3d
White LED 6200K OSRAM Opto Semiconductors LW L283-Q1R2-3K8L-1-Z Mouser 2 http://www.mouser.fr/ProductDetail/OSRAM-Opto-Semiconductors/LW-L283-Q1R2-3K8L-1-Z/?qs=sGAEpiMZZMsgSGrx0WqTbPUyJ8s29bGV
LED Infrarouge Farnell OP290A Optek technology 4 http://fr.farnell.com/optek-technology/op290a/led-t-1-3-4/dp/1497872
Récepteur Infrarouge Vishay Semiconductors TSOP38238 Mouser 6 http://www.mouser.fr/ProductDetail/Vishay-Semiconductors/TSOP38238/?qs=sGAEpiMZZMvAL21a%2fDhxMtgKho2n4%2fgBkajAZHPY5lE%3d
Circuit d'horloge Texas Instruments NE555 RS Online 2 https://fr.rs-online.com/web/p/timers/0526959/
1kΩ Resistor ROHM Semiconductor ESR03EZPJ102 Mouser 4 http://www.mouser.fr/ProductDetail/ROHM-Semiconductor/ESR03EZPJ102/?qs=sGAEpiMZZMu61qfTUdNhG1IKPAnaLGejvfM9hA7acow%3d
10kΩ Resistor ROHM Semiconductor ESR03EZPJ103 Mouser 4 http://www.mouser.fr/ProductDetail/ROHM-Semiconductor/ESR03EZPJ103/?qs=sGAEpiMZZMu61qfTUdNhG1IKPAnaLGejZIagwiN2IRk%3d
1MΩ Resistor ROHM Semiconductor ESR03EZPJ105 Mouser 2 http://www.mouser.fr/ProductDetail/ROHM-Semiconductor/ESR03EZPJ105/?qs=sGAEpiMZZMu61qfTUdNhG79AcIiSWYOgHx87yIE%2f9KKMdGhl9FJu5g%3d%3d
470Ω Resistor ROHM Semiconductor KTR03EZPJ471 Mouser 2 http://www.mouser.fr/ProductDetail/ROHM-Semiconductor/KTR03EZPJ471/?qs=sGAEpiMZZMu61qfTUdNhGwzMi690UM7UxxZFBtRl4vg%3d
330Ω Resistor ROHM Semiconductor ESR03EZPJ331 Mouser 2 http://www.mouser.fr/ProductDetail/ROHM-Semiconductor/ESR03EZPJ331/?qs=sGAEpiMZZMu61qfTUdNhG1IKPAnaLGejYH%2fBWzzt0Tg%3d
220Ω Resistor ROHM Semiconductor ESR03EZPJ221 Mouser 16 http://www.mouser.fr/ProductDetail/ROHM-Semiconductor/ESR03EZPJ221/?qs=sGAEpiMZZMu61qfTUdNhG1IKPAnaLGejce8FZC1%2fFYU%3d
Switch ALPS SKQGADE010 Mouser 2 http://www.mouser.fr/ProductDetail/ALPS/SKQGADE010/?qs=sGAEpiMZZMsqIr59i2oRcrO5GDYRXDIX6cdtN26xmPE%3d
USB Chip FTDI FT232RL-REEL Mouser 2 http://www.mouser.fr/ProductDetail/FTDI/FT232RL-REEL/?qs=sGAEpiMZZMs5ceO8zL%252bTxyQLQIH6hE7q
USB-C Connector Molex 105450-0101 Mouser 2 https://www.mouser.fr/ProductDetail/Molex/105450-0101?qs=sGAEpiMZZMulM8LPOQ%252byk43rDx%252b4l5FzJ4YNghWv4pnX6X7mot%2f43w%3d%3d
Régulateur 5v Texas Instruments LM1117IMPX-5 Mouser 2 https://www.mouser.fr/ProductDetail/Texas-Instruments/LM1117IMPX-50-NOPB/?qs=X1J7HmVL2ZGGwLlD0uGqKQ%3D%3D
Batteries 9V Panasonic Battery 6LF22XWA/B12 Mouser 2 http://www.mouser.fr/ProductDetail/Panasonic-Battery/6LF22XWA-B12/?qs=sGAEpiMZZMsra%2fh506hF%252bITISQoCasqh1k2eJLis9sg%3d
Roue de balance Alwayse 100613 RS-Online 2 https://fr.rs-online.com/web/p/billes-porteuses/0687770/
Emetteur/Récepteur Ultrason 40 kHz ELECFreaks RB-Elf-143 Robotshop 2 https://www.robotshop.com/ca/fr/module-sonar-hc-sr04-ultra01.html
Pin externe mâle 2
AVR chip 2
Capteur à effet Hall 2
Aimant permanent 2

Information sur le projet

Microprocesseur

Les robots devant effectuer différentes tâches en parallèle (Déplacement, Envoi de trame infra-rouge, réception de trame infra-rouge), nous avons intégré la bibliothèque FreeRTOS dans l'Arduino afin que celui-ci agisse comme un OS.

InfraRouge

Pour la transmission en infra-rouge, chaque robot enverra son identifiant à intervalle aléatoire. Pour assurer au maximum l'intégrité du message reçu, on y intègre des bits de stuffing (une inversion de bits tous les n bits similaires de suite), ainsi qu'un bit de parité en fin.

Au fur et à mesure du codage de l’émission de l’infrarouge, nous nous sommes rendus compte qu’on allait se confronter à plusieurs problèmes, tel que la corruption du signal infrarouge par l’émission d’autres robots. Pour palier à cela, nous avons décidé d’utiliser des bits de stuffing: Tous les n bits similaires on ajouter un bit contraire afin de vérifier de la non corruption du message. Ainsi, si il y a n+1 bits à l’état haut à la suite, cela signifie qu’on reçoit deux signaux en même temps. Donc on arrête de lire le message en cours, corrompu. Comme les robots émettent régulièrement leurs identifiants, on peut se permettre d’en rater quelques-uns. Second problème, que se passe-t-il si on commence à lire un message alors qu’on est à la moitié du message émis? On se retrouve alors avec des identifiants faux. Donc on a rajouté n+1 bits de start. Comme cela, on est sûr qu’on est au début du mot.

L’identifiant à l’émission paramétré, il faut à présent coder la réception. Ainsi on vérifie qu’on reçoit bien les n+1 bits de start. Puis à chaque bit similaire on incrémente un compteur, on vérifie qu’à chaque fois qu’on a n bits similaire, le bit suivant est inversé. Si c’est le cas, on passe le bit de stuffing puis on continue à lire le message, sinon on arrête la lecture.

Pour pouvoir tester la réception, il nous faut utiliser un capteur IR TSOP, donc modulé à 38kHz. Contrainte occasionnée, moduler notre signal pour qu’il soit lu par le capteur. Au début, on utilisait la fonction _delay_ms d’AVR pour pouvoir effectuer une modulation. Mais il s’avérait que cette fonction n’avait pas une résolution assez fine. Donc on passe à présent par les TIMERS de l’Arduino. Pour pouvoir visualiser le signal émis par les LED IR, on a placé en série des LED classiques. A l’émission, on observe bien un signal modulé mais il est impossible de savoir si il est bien à 38kHz, d’autant plus que la LED reliée au capteur n’a pas l’air de s’allumer. Donc on peut supposer que la fréquence du signal n’est pas bonne. Pour cela, on utilisera un oscilloscope afin de visualiser le signal et voir si c’est à l’émission qu’on a un problème.

Carte Électronique

Notre but, ici, était d'étudier et re-travailler une carte électronique déjà réalisée (Projet Peip Module IMA). Nous avons ainsi travaillé sous Fritzing afin de s'adapter au mieux au fichier existant. Afin de réaliser les fonctions désirées, la carte électronique se compose :

-d'un microprocesseur Atmega328.
-de 3 capteurs Infra-rouge (TSOP) ainsi que d'un émetteur-recepteur ultrason afin de repérer les autres robots ainsi que les obstacles.
-d'une LED infra-rouge afin d'être visible.
-de deux servomoteurs pour assurer les déplacements.
-d'une alimentation.
-d'une partie gérant la liaison USB


PCB finale du robot. PCB finale du robot (vue schématique).


Liste des tâches à effectuer

  • Étude Électronique
    • Étude de la communication infrarouge
      • Évaluation de la faisabilité.
      • Étude de la modulation/démodulation.
      • Détermination du circuit électronique correspondant.
    • Création de la carte Électronique.
  • Étude informatique : programmation en C
    • Communication infrarouge
      • Émission des trames d’identification.
      • Réception des trames et analyse.
    • Programmation en C
      • Implémentation de FreeRTOS dans l'Arduino.
      • Contrôle des moteurs.
      • Algorithmie primaire (suivre, s'orienter..).
    • Programmation sur un moteur de jeu pour simulation (Unity3D : C#, ou Godot).


Feuille d'heures

Tâche Prélude Heures S1 Heures S2 Heures S3 Heures S4 Heures S5 Heures S6 Heures S7 Heures S8 Heures S9 Heures S10 Total
Analyse du projet 6 4 / / / / / / / / / 10
Étude de la communication infrarouge et des moteurs / 6 / 1 / / / / / / / 7
Implémentation de FreeRTOS dans l'Arduino / / 2 / 3 /
Développement en C de la communication infrarouge / 3 2 4 1 4
Programmation du contrôle des moteurs / / 3 / / /
Programmation de l'algorithmie des robots / / 3 / / /
Étude et Conception de la carte électronique / / / 1 5 4 6
Modélisation 3D du robot en CAD / / 5 2 2 1 1
Programmation pour simulation / / 6 / / /
Total

Déroulement du projet

Semaine 2

Arduino

Programmation de l'envoi en série de l'identifiant du robot sur la LED L.
Implantation de FreeRTOS

Moteurs et Algorithmie

Mise en place du programme de contrôle des moteurs et développement d'une base de programmation pour les robots.

Ébauche de modélisation 3D du robot

Modélisation 3D

Conception en CAD sur Onshape de la coque du robot dans le but d'une impression 3D.




Simulation

Développement d'une simulation des robots sur le moteur de jeu Unity3D.
Projet mis à l’écart suite à une réévaluation des priorités.

Semaine 3

Arduino

Programmation de la réception en série de l'identifiant.
Rajout des bits de stuffing.

PCB

Récupération du fichier déjà existant, mise en place de l'environnement logiciel.

Semaine 4

Arduino

Correction de problèmes du projet FreeRTOS.

PCB

partie mécanique "élévatrice du capteur"










Analyse et étude de la carte électronique existante.

Semaine 5

Arduino

Synchronisation de l'envoi et réception des trames par sémaphore.

PCB

partie mécanique "élévatrice du capteur"


Modification de la carte et adaptation au projet en cours. Le but étant d'optimiser la carte au fonctionnement d'un robot en essaim, nous avons retravaillé certaines parties telles que la séparation du câblage des TSOP, afin d’accéder à leur valeur en continu ainsi que de réduire les différenciations d'alimentation. Nous obtenons ainsi la version finale de la carte.