IMA3/IMA4 2020/2022 P6
Sommaire
Présentation
Contexte
De nos jours, de plus en plus d’appareils électroniques ont besoin d’une connexion internet pour fonctionner. En outre, la majeure partie de nos données sont conservées sur le cloud et transitent par le biais d’internet. Il est donc nécessaire pour des grandes entreprises ou même des particuliers de pouvoir sécuriser ces données et ces appareils. Le réseau doit être protégé de toutes attaques malveillantes. Une manière de sécuriser le réseau est de détecter qui peut être un utilisateur malveillant, c'est que nous allons faire dans ce projet.
Description
Pour identifier les utilisateurs suspects voir malveillant, nous allons écouter le réseau et au travers des différents paquets échangés essayer de détecter les tentatives de connexions suspectes. La récupération des données du paquet suspect nous permet d'identifier la machine et permettrait d'isoler ou de bannir cette utilisateur du réseau mais ce n'est pas dans le cadre du projet. Pour écouter le réseau nous utilisons Wireshark, l'écoute génère un fichier avec l'extension .pcap que nous allons traiter en Python. Le fichier est .pcap est la liste des paquets écoutés. Avec python, nous allons analyser ces listes de paquets avec TensorFlow un outil open source d'apprentissage automatique et la bibliothèque Keras permettant d'interagir avec les algorithmes de langages d'apprentissage profond. L'objectif est d'analyser les différents paquets pour en identifier les comportements suspects. Cependant, nous devons définir ce qu'est un comportement suspect en analysant les différents protocoles wifi.
Partie Réseau
Théorie
La partie du réseau que nous allons étudier/analyser est la Wi-Fi. Nous nous pencherons donc sur la composition des trames Wi-Fi qui se basent sur le standard IEE 802.11.
Trame 802.11
Voici la description d'une trame Wi-Fi, ce qui nous intéresse dans notre projet ce sont les données MAC. Le préambule ainsi que l'en-tête PLCP sont présents pour permettre une connexion ainsi qu'une synchronisation avec les points d'accès (couche physique/niveau 1).
Explication des différents champs
-Contrôle de trame (2 octets) : donne des informations sur la nature de la trame
-Durée (2 octets) : donne la durée de la séquence en ms
-Adresse 1,2 et 3 (3*6 octets) : Tout dépend du mode de fonctionnement (ad-hoc ou infrastructure). Le plus souvent ce sera en mode infrastructure avec l'adresse 1 qui désigne l'adresse MAC du point d'accès, l'adresse 2 désignant la station source et l'adresse 3 désignant la station destination.
-Contrôle séquence (2 octets) : composé d'un numéro de séquence attribué à chaque trame sur 12 bits ainsi que numéro de fragment sur 4 bits si la trame est fragmentée.
-Corps de la trame(0 à 2312 octets) : trames de niveaux supérieurs qui sont encapsulés dans la trame 802.11
-CRC (4 octets) : somme de contrôle
Mode moniteur
Maintenant que nous comprenons le contenu d'un paquet Wi-Fi, nous souhaitons capturer tous ces paquets afin de les étudier. Il faut savoir qu'il existe plusieurs mode de fonctionnement d'une carte réseau. Le plus courant est le mode infrastructure qui va permettre de communiquer avec les autres appareils. Il existe aussi le mode moniteur qui nous permet d'écouter le trafic réseau et de capturer les paquets. Le mode moniteur permet l'écoute et l'analyse passive des données circulant sur le réseau. Dans notre projet, nous utiliserons ce mode de fonctionnement pour sniffer les trames 802.11 à l'aide d'un logiciel de sniffing. Cependant, une fois dans ce mode, il nous est impossible de communiquer avec d'autres appareil au travers de ce réseau puisque l'appareil n'est pas connecté à un point d'accès (elle n'a pas d'adresse IP définie).
Capture Réseau
Aujourd'hui, beaucoup d'utilitaire sont développés afin de capturer des paquets réseau et les analyser. Les logiciels vont analyser les paquets afin de décrypter et ressortir les infos qu'ils transportent. Les logiciels comme Kismet et Wireshark permettent à un utilisateur de faire de la surveillance réseau manuellement. L'utilitaire Aircrack quant à lui permet de cracker des clés Wi-Fi en s'appuyant sur le mode moniteur de la carte réseau. Nous nous appuierons donc sur ces logiciels afin de réaliser notre projet. Les fichiers de capture de paquets sont sous l'extension pcap et sont lisibles par des analyseurs de réseau.
Wireshark
Nous souhaitons récupérer les données importantes des trames Wi-Fi afin de les analyser par la suite à l'aide de notre algorithme de machine learning. Pour cela nous allons réaliser cette partie en deux temps. Premièrement, la capture des paquets. Puis l'extraction des données en vue de l'analyse.
Pour réaliser la capture des paquets, nous pouvions utiliser plusieurs utilitaires tels que Wireshark, dumpcap, tcpdump et Aircrack.
Lors du premier semestre, nous nous étions penchés sur l'utilisation d'Aircrack. Cependant, ce choix ne s'est pas révélé être le bon puisque nous avons constaté que les paquets étaient certes capturés mais les informations importantes qui permettraient une analyse et ne détection des menaces n'étaient pas récupérées. Nous avons donc dû changer de logiciel de sniffing lors de ce second semestre afin de capturer des paquets en entier.
Nous nous sommes donc penchés sur la suite Wireshark. Wireshark sniffe, capture les paquets et les analyse également. Le logiciel Wireshark est utilisable avec une interface graphique. Ce qui ne nous arrange pas puisque nous voulons automatiser la capture/pré-analyse. Nous passerons donc par la commande "dumpcap" qui est la version en lignes de commande de Wireshark.
Liste des commandes utilisées :
-f : Permet de capturer seulement certain types de paquets. Par exemple -f arp permet de capturer seulement les paquets ARP
-I : Met la carte en mode routeur et nous permet de capturer tous les paquets 802.11 circulant sur le réseau -P : Permet d'obtenir un fichier d'extension pcap à la place d'un fichier pcapng.
-a duration:time : arrête la capture après un temps "time" en secondes. exemple dumpcap -a duration:30 fait une capture de paquets pendant 30 secondes.
Nous sommes donc arrivés à une capture par le biais de la commande suivante :
dumpcap -I -P -a duration:60 -f "type mgt or type ctl or type data"
Cette commande nous permet de capturer tous les paquets 802.11 en passant notre carte en mode moniteur pendant une durée de 60 secondes. Le filtre -f permet d'ignorer les paquets malformés ou corrompus. En pré-analysant les différents trames Wifi, nous serons capable de récupérer les informations nécessaires.
Nous voulions ensuite passer sur un analyseur de trame pour récupérer les données. Nous avons essayé d'utiliser la librairie scapy une librairie python pour ressortir les informations des paquets mais cela ne s'est pas révélé concluant. Les informations récupérées n'étant pas les bonnes.
En observant les données demandées pour l'algorithme de Machine Learning, nous nous sommes rendu compte que l'analyse ne devait pas se faire paquets par paquets mais plutôt statistiquement, c'est à dire en observant les connexions entre deux adresses, leur nombre,....
Nous avons donc décidé de nous tourner vers l'utilitaire tshark qui nous permet de préanalyser les fichiers de capture d'extension pcap. Nous allons pouvoir sortir les données sous forme de tableaux exploitables par l'algorithme.
Format de la commande :
tshark -r fichieràlire -T fields -e nomduchampàrécupérer > fichier.csv
aireplay-ng
Aireplay-ng est un outil de de la suite aircrack-ng. La suite de logiciel permet la surveillance de réseaux sans fil mais son utilisation principale est de casser les clés WEP et WPA des réseaux Wi-Fi mais ce n'est pas le but du projet, c'est pourquoi nous allons étudier aireplay-ng. Cet outil permet d'injecter des paquets 802.11 sur le réseau. Aircrack-ng s'utilise avec des lignes de commandes dans le terminal. Dans les lignes de commandes, il existe un paramètre permettant de générer des paquets pour certains types d'injections. Les types d'injection par défaut sont :
-désauthentification
-fausse authentification
-reinjection selective de paquet (permet de choisir un paquet particulier pour être injecter un grand nombre de fois sur le réseau)
- répétition de requête ARP
- Korek chopchop (permet le déchiffrement de paquets sans avoir la clé de cryptage WEP)
- attaque par fragmentation (exploite le principe de fragmentation des paquets IP)
- Cafe-latte (obtention de la clé WEP)
- attaque par fragmentation orienté client
- WPA Migration Mode (modifie le WPA migration mode qui est un paramètre des points d'accès Cisco)
- Test d'injection (simple test pour voir si notre carte réseau est capable d'injecter des paquets
Ces types d'injection ou d'attaques s'utilisent en ajoutant "-X" avec X le numéro du paramètre allant de 0 à 9 selon la liste précédente.
Dans un objectif de surveillance du réseau de l'école, les attaques concernant le protocole de sécurité WPE ne seront pas étudiés, ce protocole n'est plus utilisé depuis de nombreuses années.
Les commandes s'utilisent de la manière suivante
aireplay-ng <options> <replay interface>
En effet, il existe différentes options de filtres permettant de personnaliser les paquets avec notre réseau. Nous pouvons choisir l'adresse mac du point d'accès, l'adresse mac de destination et de source , la taille minimale et ou maximale d'un paquet, et d'autres options agissant sur la trame de contrôle. Ces paramètres sont à utiliser pour la simulation d'attaque. Voici quelques exemples :
-b bssid : MAC address, Access Point -d dmac : MAC address, Destination -s smac : MAC address, Source -m len : minimum packet length -u type : frame control, type field
Il existe aussi des options pour la répétition de paquets comme le nombre de paquets envoyés par secondes, le mot de la frame de control, la fixation d'un point d'accès, d'une adresse de destination ou de source, paramétrage de l'IP source ou destination. Ce sont les paramètres que nous retenons pour le moment. Ces paramètres sont à utiliser pour l'injection de paquets sans simulation d'attaque
-x nombre de paquets par seconde -a bssid : set Access Point MAC address -c dmac : set Destination MAC address -h smac : set Source MAC address -k IP : set destination IP in fragments -l IP : set source IP in fragments
Ainsi, l'objectif d'aircrack dans le projet est de simuler des attaques sur le réseau pour que nous puissions les identifier et les ajouter à notre set de données pour le modèle de machine learning.
Finalement cette solution n'a pas été retenue pour l'injection de paquets. Ce n'était pas le plus simple pour injecter des paquets sur le réseau et en même temps le simuler et en même temps capturer le réseau.
Argus
A la différence de Tshark et tcpdump, Argus ne réalise pas une copie complète du traffic, Argus se concentre sur la "Session Data" (trames TCP ou UDP). Argus décrit les conversations réseaux se concentrant sur qui parle avec qui, quand et combien d'informations ont été échangés. Cependant, nous ne pouvons pas observer des requêtes ARP par exemple, ce qui peut être dérengeant pour le projet.
Partie Machine learning
Etude de cas 1 : Classement d'images
Les premiers algorithmes de machine learning que nous avons étudiés sont des algorithmes de classification d'images. Nous avons utilisé les jeux de données (appelés Dataset) connu MNIST et Fashion MNIST afin de mettre en place, tester et surtout comprendre le fonctionnement d'un algorithme de machine learning. Le premier, MNIST, contient des images de chiffre manuscrit, le but de l'algorithme est donc de détecter de quel chiffre il s'agit sur chaque image. Le second, sur lequel nous allons nous attarder afin d'expliquer le fonctionnement d'un réseau de neurones est Fashion MNIST, qui regroupe des images de vêtements. L'algorithme doit alors être capable de classer ces vêtements par type.
Exploitation du jeu de données
Le jeu de données que nous avons principalement utilisé est le Fashion MNIST. Ce dataset contient 60000 images d'entrainement et 10000 images de test. Ces images représentent des vêtements au format 28x28 pixels. Ces vêtements sont de différents type : T-shirt, Pantalon, Pull, Robe, Manteau, Sandale, La chemise, Baskets, Sac ou Bottine. Les 60000 images forment un jeu de données d'entrainement qui va être utilisé par le programme pour apprendre à reconnaitre les vêtements en les comparant. Le jeu de test de 10000 images va quant à lui permettre d'évaluer la précision du réseau de neurones après son apprentissage.
Ces données sont charger dans des tableaux numpy pour être utilisés par le réseau :
fashion_mnist = tf.keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
Chaque élément des tableaux train_images et test_images sont des tableaux de 28x28 contenant les pixels de l'image et les éléments des tableaux train_labels et test_labels sont des nombre entier représentant les types de vétements : 0 T-shirt, 1 Pantalon, 2 Pull ...
On peut observer cela avec :
> train_images.shape() (60000, 28, 28)
Pré-traitement
Maintenant que nos données sont chargées, il faut les prétraiter afin qu'elles soient utilisables et interprétables par le réseau de neurones. Dans les tableaux précédemment créés, chaque pixel a une valeur de 0 à 255, représentant son intensité. Pour que ces données soient compréhensibles par le réseau, il faut qu'elles soient comprises dans l'intervalle 0 et 1. On ajuste donc les valeurs :
train_images = train_images / 255.0 test_images = test_images / 255.0
Nous sommes désormais prêt à construire notre modèle.
Construction du modéle
Un réseau de neurones fonctionne en couches superposées qui communiquent entre elles et qui ont des paramètres qui s'apprennent durant la formation. Ici nous utilisons un modèle séquentiel, qui est une pile linéaire de couches de neurones (appelés nœuds)
Voici la création de notre modèle :
model = tf.keras.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dense(10) ])
La première couche tf.keras.layers.Flatten permet de linéariser nos images en transformant nos tableaux 2 dimensions en tableaux 1 dimension. Les deux couches suivantes créées par tf.keras.layers.Dense comportent respectivement 128 et 10 nœuds. La dernière couche, de 10 nœuds, contient les scores correspondants aux 10 types de vêtements.
On utilise ensuite model.compile pour compiler notre modèle
Entrainement du modèle
On est ensuite prêt à entrainer le modèle :
model.fit(train_images, train_labels, epochs=10)
Le modèle s'entraine et augmente en précision à chaque nouvel entrainement On peut tester sa précision avec un jeu de test :
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
On peut aussi utiliser des prédictions que l'on vérifie avec les jeux de test pour évaluer la fiabilité du résultat.
Vérification et test du modèle
Notre modèle est désormais prêt et on peut l'utiliser en lui fournissant une image. Pour cela, on prend une image au hasard du jeu de test, ici un Pull (associé à 2)
img = test_images[1] img = (np.expand_dims(img,0)) predictions_single = probability_model.predict(img) print(predictions_single)
On obtient la probabilité que l'image a d'être chaque type :
[8.8914348e-05 1.3264636e-13 9.9108773e-01 1.2658383e-10 8.1463791e-03 1.6905785e-08 6.7695131e-04 2.7492119e-17 5.1699739e-10 7.1339325e-17]
On remarque que la probabilité 2 est beaucoup plus élevé, le modèle prédit donc un Pull, ce qui est le cas
Cette partie étude de différents réseaux de neurones, tel que celui ci, nous a grandement aidé à comprendre l'enjeu et le fonctionnement des algorithmes de machine learning. Ces connaissances nous permettent désormais de mieux comprendre comment mettre en place notre réseau de neurones pour qu'il soit efficace à notre projet.
Etude de cas 2 : Une détection d'intrusion
Notre projet consiste à surveiller le réseau et les utilisateurs de ce réseau. La question qui se pose est alors la suivante : comment surveiller et analyser les milliers de données qui transitent sur ce réseau tous les jours ? Comment reconnaître un comportement malveillant ? C'est alors là que le machine learning devient intéressant. En effet,la détection d'un comportement malveillant revient à chercher une aiguille dans une botte de foin. Mais les algorithmes de Machine Learning permettent de traiter efficacement d'immenses quantités de données.
Réseaux de neurones convolutionnels
Les algorithmes de Machine Learning reposent sur des réseaux de neurones convultionnels (CNN). Ces derniers sont composés de couches de neurones où chaque neurone est relié à tous les neurones de la couche précédente. En python, avec la commande "model.add" nous pouvons ajouter les couches nécessaires à notre réseau en décrivant chaque couche avec différents paramètres.
Pour notre projet, nous allons devoir utiliser le Deep Learning. Le Deep Learning est une forme spécifique de Machine Learning où des couches cachées sont présentes entre les différentes couches de neurones. Il est préférable d'utiliser le Deep Leraning pour deux raisons :
- Notre algorithme se forme tout seul, nous avons juste à lui fournir des données pour s'entraîner
- Le Deep Learning est plus efficace que le Machine Learning grâce à ses réseaux de neurones profonds
Paramètres permettant la détection d'intrusions
Différents paramètres sélectionnés au préalable permettent de surveiller le réseau. Ces paramètres constituent une couche d'entrée du réseau de neurones. La couche de sortie nous donne la classification des comportements malveillants. Il est très important de choisir les bons paramètres pour que notre modèle soit biaisé par de fausses informations. Les paramètres extraits du réseau sont les suivants :
- la durée totale de l'enregistrement - le nombre de paquets envoyés de la destination à la source - le nombre d'octets envoyés de la source à la destination - le nombre d'octets envoyés de la destination à la source - le nombre de paquets par seconde - Time To Live (TTL) de la source à la destination - TTL de la destination à la source - Nombre de bits par seconde pour la source - Nombre de bits par seconde pour la destination - Moyenne de la taille des paquets de flux transmis par l'adresse IP source - Moyenne de la taille des paquets de flux transmis par l'adresse IP destination
Réalisation de l'algorithme
Pour créer l'algorithme de Deep Learning maintenant bien défini, il est conseillé d'utiliser Python. Ainsi, il est possible d'utiliser deux bibliothèques écrites en Python particulièrement utiles pour créer notre algorithme : Tensorflow et Keras.
Tensorflow est un outil open source d'apprentissage automoatique. C'est un outil très utilisé dans le domaine de l'intelligence artificielle et plus particulièrement de l'apprentissage machine.
Keras est quant à lui permet d'interagir avec les algorithmes de réseaux de neurones profonds et d'apprentissage automatique comme Tensorflow cité précedemment.
La combinaison de ces deux bilbiothèques permet de créer notre algorithme de Deep Learning.
Fonctionnement de l'algorithme
Un premier programme training-set permet de créer le modèle séquentiel avec plusieurs entrées et une seule sortie. L'utilisation de Convolution (Conv2D) et ReLU permettent des réduire la taille des données (filtre). L'utilisation de MaxPooling permet elle d'échantillonner les données pour diminuer leur dimension. Nous diminuons ainsi les données jusqu'à obtenir une seule sortie.
Il nous faut ensuite prétraiter les données. Pour cela on isole les données qui nous intéressent puis on les normalise pour obtenir un jeu de données compréhensible par notre modèle.
Pour créer notre jeu de données initiale, nous allons faire une écoute réseau sur une durées assez importante et pendant cette période simuler des attaques avec l'outil aireplay-ng pour que les paquets malveillants soit capturés. Une fois tous les paquets capturés, nous devrons identifiés nous même lesquels sont malveillants pour que l'algorithme puisse par la suite comprendre et établir un modèle d'un comportement malveillant sur le réseau.
Nous pouvons ensuite générer notre modèle séquentiel et l'entraîner avec nos données pour avoir un programme opérationnel. Une fois opérationnel, nous pouvons enregistrer ce modèle en format Keras H5 ou sous forme d'un fichier JSON.
Création de notre modèle
De notre côté, nous cherchons à réaliser du net monitoring, nous ne devons pas écouter seulement ce qui arrive sur notre machine mais nous devons aussi écouter ce qu'il se passe sur les machines environnantes.
Dans un premier temps, nous allons devoir créer notre modèle séquentiel. Sa taille et le nombre de couches variera en fonction du nombre de paramètres retenus.
Afin de créer nos Dataset utiles à l'apprentissage et l'entraînement de notre modèle, nous devrons simuler quelques attaques sélectionnées au préalable avec Aircrack. Ainsi nous pourrons récupérer certains paquets en sachant qu'ils sont suspects pour créer notre Dataset.
Une fois notre modèle entraîner, nous pourrons l'enregistrer sous forme d'un fichier Keras H5. Sinon, nous avons toujours l'option d'enregistrer notre modèle sous la forme d'un fichier JSON.
Nous pouvons ensuite lancer l'écoute réseau en arrière plan. Durant l'écoute, nous allons extraire les paramètres sélectionnés dans fichier log. Ainsi, pendant que le fichier continue de se remplir, notre modèle séquentiel pourra réaliser l'étude des paramètres pour essayer de détecter des comportements malveillants. En cas d'attaque, nous devrons créer une alerte, cela se fera surement à l'aide d'un second programme python.
Révision du projet
Nous avons décidé de nous concentrer sur les attaques à base d'injection ARP comme par exemple l'attaque Man In The Middle. En effet, cette attaque est composée de deux étapes : l'usurpation ARP et l'empoisonnement ARP.
L'usurpation ARP est une attque où un pirate envoie de faux paquets ARP reliant l'adresse MAC d'un attaquant à l'adresse IP d'un ordinateur déjà sur le LAN.
L'empoisonnement ARP, après une usurpation réussie, permet au pirate de modifier la table ARP de sa victime afin de falsifier les correspondances entre adresses MAC et IP. Ainsi, le pirate a accès à tout le traffic envoyé au réseau compromis sans même que la victime soit au courant.
Une fois installé, le pirate peut donc examiner tout le trafic envoyé au réseau avant que la victime le reçoive, il peut donc refuser d'acheminer le trafic s'il le souhaite. Il peut aussi modifier les informations envoyées avant que la victime les reçoive.
Ces attaques Man-in-the-middle compromettent la confidentialité, elles sont l'unes des cybermenaces les plus redoutables et dangereuses. C'est pourquoi nous avons décidé de nous concentrer sur ce type d'attaque.
Pour cela, nous allons observer le pourcentage de paquets ARP, de paquets UDP et de paquets TCP sur les 60 dernières secondes. Nous allons simuler des injections ARP pour créer des paquets malveillants. Ces paquets serviront à l'apprentissage de notre modèle de deep learning.
Architecture de notre réseau de neurones
L'architecture de notre réseau de neurones convolutionnel nous a posé quelques problèmes puisqu'à ce jour, il est diffcile de déterminer une architecture idéale. En effet, nous avons vu plusieurs projets qui testaient différentes architectures "à l'aveugle" pour regarder laquelle était la meilleure. De plus, chaque projet nécessite une architecture propre à elle. Cepedant, nous avons trouvé une thèse (renseignée en bibliographie) sur la détection d'attaque ARP à l'aide de deep learning.
Après une sélection simple des paramètres, différentes architectures ont été testées pour voir quelle était la plus efficace. Il en est ressorti de cette thèse qu'une architecture avec 3 neurones sur la couche d'entrée, une couche cachée comportant 3 neurones et 1 neurone sur la couche de sortie était l'architecture la plus efficace. Les paramètres sélectionnés sont les suivants : pourcentage de paquets ARP, TCP et UDP sur la dernière minute.
En se basant sur cette thèse, nous avons crée un réseau de neurones convolutionnels semblable en essayant d'enchaîner au mieux les MaxPooling et les Conv2D. Nous en sommes arrivés au code suivant :
def generate_cnn_model(shape): model = Sequential() model.add(Conv2D(32, (3, 1), activation='relu', input_shape = (3,1,1))) model.add(Conv2D(32, (3, 1), activation='relu',padding="same")) model.add(MaxPooling2D(pool_size=(2, 2),padding="same")) model.add(Conv2D(64, (3, 1), activation='relu',padding="same")) model.add(Conv2D(64, (3, 1), activation='relu', padding="same")) model.add(Conv2D(64, (3, 1), activation='relu', padding="same")) model.add(MaxPooling2D(pool_size=(2, 2),padding="same")) model.add(Conv2D(128, (3, 1), activation='relu', padding="same")) model.add(Conv2D(128, (3, 1), activation='relu', padding="same")) model.add(Conv2D(128, (3, 1), activation='relu', padding="same")) model.add(MaxPooling2D(pool_size=(2, 2),padding="same")) model.add(Flatten()) model.add(Dense(1, kernel_initializer='normal', activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1, kernel_initializer='normal', activation='relu', name='output')) model.add(Dense(1, kernel_initializer='normal', activation='softmax')) return model
Création de notre dataset
Phase de pré-processing
Les données que nous récupérons sont des données brutes (des paquets réseau). Nous devons donc réaliser une phase de pré-processing pour récupérer des données utilisables. Ces données utilisables sont dans notre cas le pourcentage de paquets TCP, UDP et ARP sur les 60 dernières secondes. Pour chacun des deux datasets, nous allons parcourir le fichier ligne par ligne. Pour chacune des lignes, nous récupérons les paquets des 60 dernières secondes et nous identifions la nature de chacun des paquets. Après l'identification, nous comptons le nombre de paquets de chaque type sur la dernière minute, nous pouvons ainsi calculer nos pourcentages :
# On parcourt le 1er dataset "classique" for i in range(0,len(reader)): for j in range(i,0,-1): if reader[j].time > reader[i].time - 60: if reader[j].haslayer(TCP): compteur_tcp += 1 if reader[j].haslayer(UDP): compteur_udp += 1 if reader[j].haslayer(ARP): compteur_arp += 1 else: break if (compteur_udp+compteur_tcp+compteur_arp !=0): if (cpt%3 ==0): pourcentage_udp_test.append( (compteur_udp)/(compteur_udp + compteur_tcp + compteur_arp)) pourcentage_tcp_test.append( (compteur_tcp)/(compteur_udp + compteur_tcp + compteur_arp)) pourcentage_arp_test.append( (compteur_arp)/(compteur_udp + compteur_tcp + compteur_arp)) y_test1.append(1) cpt=cpt+1 else: pourcentage_udp_tr.append( (compteur_udp)/(compteur_udp + compteur_tcp + compteur_arp)) pourcentage_tcp_tr.append( (compteur_tcp)/(compteur_udp + compteur_tcp + compteur_arp)) pourcentage_arp_tr.append( (compteur_arp)/(compteur_udp + compteur_tcp + compteur_arp)) y_train1.append(1) cpt=cpt+1
Nous rangeons ensuite chaque pourcentage dans un tableau différent (poucentage_udp,pourcentage_tcp,pourcentage_arp). Comme vous pouvez le voir ci-dessus, nous avons décidé de consacrer les 2/3 de nos données à la création d'un dataset de training et 1/3 de nos données à la création d'un dataset de test.
Ensuite, nous mettons nos données en format matrice (plutôt que tableau de listes) :
# On met nos données en format matrice (plutot que tableau de liste) x_train = [pourcentage_udp_tr,pourcentage_tcp_tr,pourcentage_arp_tr] x_train_final = np.array(x_train) x_train_final = np.transpose(x_train_final) y_train_final = np.array(y_train1)
Enfin, pour pouvoir utiliser les convolutions (Conv2D) dans l'entraînement de notre modèle, nous devons faire un "reshape" de nos données d'entrées puisque Conv2D attend au minimum des données de dimension 3 :
# On reshape la forme des données d'entrées pour que ca match avec Conv2D x_final_train = [] size = np.size(x_train_final,axis=1) for x in x_train_final: sample = x.reshape([size,1,1]) x_final_train.append(sample) x_train_final = np.array(x_final_train)
Nous pouvons ensuite retourner nos différentes données (x_train,x_test, y_train, y_test).
Entraînement et évaluation de notre modèle
Dans le main, nous allons appeler les différentes fonctions décrites précedemment pour créer et entraîner notre modèle dans un premier temps :
def main():
(x_train,y_train,x_test,y_test)=preporcess(); shape = x_train.shape
# Declare the model model = generate_cnn_model(shape)
# Compile the network opt = tf.keras.optimizers.Adam() model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['categorical_accuracy'])
# Early stopper declaration for the traning stopper = EarlyStopping(monitor='val_binary_accuracy', patience=10, mode='auto')
# Learning model.fit(x_train, y_train, epochs=1, callbacks=[stopper], batch_size=10)
# Evaluate the performance of the model eval(model, x_test, y_test) # serialize model to JSON model_json = model.to_json() with open("model.json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 model.save_weights("model.h5") print("Saved model to disk")
Dans un second temps, nous allons évaluer la qualité de notre modèle grâce à la fonction "eval(model,x_test,y_test)" décrite ci-dessous :
def eval(model, x_test, y_test): print ("Evaluation :") score = model.evaluate(x_test, y_test, verbose=1,batch_size=5) print("loss on test data:", score[0]) print("accuracy on test data:", score[1]*100, "%")
Une fois le modèle entraîné puis testé, il ne nous reste plus qu'à le sauvegarder. Nous le sauvegardons sous deux formats différents : un format JSON puis un format HDF5.
Exécution du modèle en temps réel
Conclusion
Ce qu'il reste à faire
Côté Réseau
Nous sommes arrivés au point où nous avons trouver l'outil de capture qui convenait. Il nous reste maintenant à récupérer les informations nécessaires à l'utilisation de l'algorithme de machine learning. Nous devons ensuite les enregistrer dans un fichier d'extension .log ou .csv. Ensuite, après avoir réussit cette étape, nous devons créer un script (shell ou C) afin d'automatiser cette capture.
-Récupération des données pour le machine learning.
-Automatisation de la capture avec un script (shell ou C).
Côté Projet général
En ce qui concerne l'unité du projet, il nous faudra faire le lien entre la capture ainsi que le machine learning. Aujourd'hui, nos essais se sont fait avec l'intervention de l'utilisateur. Notre but final est de réussir à faire un outil autonome. Pour cela nous devrons faire le lien entre la partie capture et machine learning ainsi qu'automatiser notre outil à l'aide d'un script shell ou C.
Avancé du projet (S7)
Séance 1
Lors de cette séance nous avons du redéfinir les objectifs de notre projet pour repartir sur de bonnes bases. Les travaux que nous avons fait lors du semestre précédent sont à abandonner. Nous devons comme expliquer précédemment récupérer les paquets avec un fichier .pcap et ensuite les analyser pour trouver les comportements suspects avec un différents outils comme Tensorflow. Nous allons devoir définir ce qui est un comportement suspect et ce qui ne l'est pas. Nous nous sommes répartis les tâches. Théo et Tristan vont travailler sur l'analyse des données en Python et Simon et Valentin vont travailler sur la récupération des données grâce à Wireshark et ses différents fonctionnalités.
Séance 2
Lors de cette séance, nous devons continuer notre formation sur les différents outils pour l'analyse des données et nous devons continuer à améliorer la récupération des données en réfléchissant sur quelles données des vont nous être utiles pour déterminer le comportement des utilisateurs. Valentin et Simon se sont concentrés sur la capture de paquets avec l'utilitaire dumpcap. Ils ont notamment pu capturer des paquets de protocole Wi-Fi.
Séance 3
Le but de cette séance pour Valentin et Simon est de comprendre la structure d'un paquet Wi-Fi afin de déduire certains comportements suspects. Ils continuent aussi leurs recherches sur l'analyse automatique des paquets afin qu'ils soient traités par la suite par l'algorithme de machine learning. Du côté de Tristan et Théo, on se forme au machine learning (suivi des tutoriels de base de tri d'image...) et on essaie de voir quelles données traiter et comment les traiter pour réaliser notre projet.
Séance 4
Nous avons trouvé plusieurs bonnes documentations sur le Net Monitoring par Machine Learning (ou même Deep Learning). Nous essayons de mettre en place les techniques apprises, c'est ici que nous rencontrons plusieurs difficultés.Concernant la partie de capture et d'analyse des paquets, nous avons continué nos recherches afin d'obtenir les informations importantes du fichier pcap. Nous nous penchons donc vers l'utilisation de scapy.
Séance 5
Nous continuons nos recherches pour récupérer les informations du fichier pcap. A l'aide de scapy, nous avons réussi à ressortir des données importantes des paquets (addresse de destination, type de paquet,..). Un problème s'oppose à nous : les paquets malformés. Nous devons trouver un moyen d'ignorer ces paquets dans notre analyse afin d'avoir un paquet de données cohérent.
Séance 6
Au vu des données souhaitées par Théo et Tristan, nous passons sur l'utilisation de tshark pour l'analyse des paquets. En effet, tshark va nous permettre d'obtenir des données statistiques sur les discussions entre deux adresses. Nous utiliserons ainsi dumpcap pour la capture et tshark pour l'analyse des données capturées. L'utilisation de scapy devient donc inutile si nous réussissons à extraire les données avec tshark.
Bibliographie
Etat de l'art
Argus : https://github.com/jmanteau/lprims-nsm/blob/master/TP%20-%20Utilisation%20Tcpdump%20Tshark%20Argus%20Snort%20Bro.md https://www.mankier.com/1/ra?fbclid=IwAR1TznPzCRb2kxH1yEf5OsUf03rElYWdvzjmdFGzFwRr_3VQvsAZ8isf8VI#Synopsis
Partie réseau
Partie machine learning
Détection d'intrusion : https://connect.ed-diamond.com/MISC/mischs-018/vers-une-detection-d-intrusion-dynamique-et-continue-en-utilisant-les-reseaux-de-neurones?fbclid=IwAR1XAjxRdHp_NHfmqxpxHNlNYuKgTRPxV9GayYv-53j6B5ZeOn6HCxheM-Y
Keras : https://keras.io/guides
Tensorflow : https://www.tensorflow.org
Man-in-the-middle : https://www.okta.com/fr/identity-101/arp-poisoning/
Thèse sur la détection d'attaque ARP : https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3659129