IMA4 2017/2018 Pré-projet 1

De Wiki de Projets IMA
Révision datée du 24 novembre 2017 à 11:40 par Egomezri (discussion | contributions) (Réalisation du Projet)


Présentation générale

Le projet consiste à faire un robot araignée hexapode qui monte les escaliers

Description

Le projet se découpe en plusieurs phases :

  • fabrication du robot hexapode avec des servos-moteurs,
  • programmation du robot pour monter des escaliers,
  • localisation du robot dans Polytech et mesure de la puissance du wifi.

Objectifs

Analyse du projet

La première étape est de faire de la bibliographie sur le sujet afin de définir :

- les actions à mener pour le projet --> définir l'estructure, programation du robot et montage du robot

- le matériel à utiliser

- le scénario d'usage --> le robot doit monter les escaliers


Positionnement par rapport à l'existant

Scénario d'usage du produit ou du concept envisagé

Préparation du projet

Pour la structure du robot je vais utiliser l'imprimante 3D, donc je va faire la structure au format .stl. Pour la structure je vais faire 3 composants pour les pattes et une partie central. Comme un exemple de la structure on peux regarder cette vidéo: [1]

J'ai trouvé un design qui pourrait être intéressant pour la structure du robot: [2]

Dans ce fichier, vous pouvez voir les images de conception Fichier:Diseño robot.pdf

Les jambes ont trois parties, jointes par les servos.


Cahier des charges

Choix techniques : matériel et logiciel

Pour ce robot, on a besoin de:

- 18 servo-moteurs (3 par patte, 6 pattes) --> M = 9 g ; V = 4.8 - 7.2 V ; F = 1.5 kg/cm ; v = 0.10 s/60º

- Arduino MEGA

- Fils pour connecter l'Arduino et les servo-moteurs

- Imprimante 3D

- Une banque de batterie usb de 5 V

- Une batterie de 9 V et 300 mA

- 24 batteries AA de 1.5 V (6 groupes de 4 batteries, chaque groupe a 6 V et 2 A)

- 6 supports des batteries

Liste des tâches à effectuer

  1. Décider de la structure du robot: Le robot aura 6 pattes. Quelque patte aura 3 composants pour avoir un mouvement qui ressemble à une araignée. Le design sera fait au format stl pour être utilisé dans l'imprimante 3D.
  2. Utiliser l'imprimante 3D pour obtenir les parties du robot.
  3. Commencer la programation de l'Arduino. Vous devez programmer 18 servomoteurs (3 par patte, 6 pattes).
  4. Faire la connexion entre l'Arduino et les servo-moteurs.

Calendrier prévisionnel

Réalisation du Projet

Pour mener à bien le projet, nous devons savoir quels servos utiliser. Les servos doivent être capables de soulever le robot entier, ils doivent donc avoir la force nécessaire. Pour bouger, le robot tiendra sur ses trois jambes tout en avançant avec les trois autres. Cependant, en montant les escaliers, deux servos doivent être capables de soulever le robot. C'est pourquoi nous allons diviser le poids du robot entre les deux servos qui fonctionneront en même temps.

Le robot a:

  1. Arduino
  2. Batteries
  3. Servo-moteurs
  4. GPS
  5. Sructure

Nous devrons utiliser le méga arduino, car nous avons besoin de suffisamment d'épingles pour les 18 servo-moteurs. L'arduino mega pèse 55 grammes.

Nous avons 18 servo-moteurs. Chaque servo-moteur pèse entre 8 et 13 grammes, selon le modèle. Par conséquent, ce sera entre 144 et 234 grammes.

Le GPS pèse 8.5 grammes.

Pour connaître le nombre de batteries dont nous avons besoin, nous devons savoir quelle intensité consomme un servomoteur. Les modèles possibles de servomoteur sont:

  1. 1.3kg: M = 8 g ; V = 4.8 - 7.2 V ; F = 1.3 kg/cm ; v = 0.12 s/60º
  2. 1.5kg: M = 9 g ; V = 4.8 - 7.2 V ; F = 1.5 kg/cm ; v = 0.10 s/60º
  3. 1.8kg: M = 10 g ; V = 4.8 - 7.2 V ; F = 1.8 kg/cm ; v = 0.12 s/60º
  4. 2.5kg: M = 13 g ; V = 4.8 - 7.2 V ; F = 2.5 kg/cm ; v = 0.10 s/60º

M = masse ; V = tension ; F = force ; v = vitesse

On va faire les calculs avec deux servos:

  1. 1.5kg:

C = 1.5 kg/cm * 9.8 N/kg * 1 m / 100 cm = 0.147 Nm

w = 10.47 rad/s

P = C * w = 1.539 W

I = P / V = 0.2565 A


  1. 2.5kg:

C = 2.5 kg/cm * 9.8 N/kg * 1 m / 100 cm = 0.245 Nm

w = 10.47 rad/s

P = C * w = 2.565 W

I = P / V = 0.4275 A

Il doit être pris en compte que la performance d'un servomoteur est d'environ 50%, donc finalement, pour un servo de 1.5 kg --> I = 0.513 A et pour un servo de 2.5 kg --> I = 855 A.

Pour le servo de 2.5 kg, l'intensité total doit être 16.2 A (si I = 0.9 A). On peux utiliser batteries AA. 4 batteries de 1.5 V fait un batterie de 6 V (pour la tension du servo) avec I = 2 A. Cet batterie pèse 24 * 4 = 96 grammes. Si on utilise une batterie de 6 V pour deux servo-moteur, on a 9 batteries, qui pèsent 864 grammes.

Pour le servo de 1.5 kg, l'intensité total doit être 10.8 A (si I = 0.6 A). Si on utilise batteries AA, on peux utiliser une batterie de 6 V pour trois servo-moteur, donc on aura 6 batteries, qui pèsent 576 grammes.

Le support de batterie pèse 16 grammes. Si on utilise 9 supports ça fait 144 grammes. Avec 6 supports c'est 96 grammes.


Pour le gps nous allons utiliser une banque de batterie usb de 5 V (286 g), et pour l'Arduino nous allons utiliser une batterie de 9 V et 300 mA (54 g).

Pour trouver le poids de la structure, j'ai utilisé le robot que mes collègues ont fait l'année dernière. J'ai calculé un poid de 180 grammes, donc on peut supposer que le poids de la structure sera compris entre 100 et 250 grammes.

Première supposition

Servo-moteur de 1.5 kg --> Mtotal= 55 + 162 + 8.5 + 576 + 96 + [100, 250] = 1072.5 +- 75 grammes


Deuxième supposition

Servo-moteur de 2.5 kg --> Mtotal= 55 + 234 + 8.5 + 864 + 144 + [100, 250] = 1480 +- 75 grammes


Je crois que on peux choisir la première supposition pour le robot, donc on a besoin des servo-moteurs de 1.5 kg, 24 batteries AA de 1.5 V et 6 supports des batteries


J'ai effectué le test d'une jambe de robot. Pour ce test, j'ai branché les servo-moteurs à la protoboard, qui est alimenté par la batterie. L'Arduino est branché à l'ordinateur pour télécharger le programme et l'alimenter. Connexion.jpg

Pour tester les mouvements de la patte, j'ai utilisé cette programme.


Il y a un problème avec l'alimentation. si un seul servo est testé, il fonctionne correctement, mais si deux servos ou plus sont connectés, ils sont bloqués ou ils font de courts mouvements et ils vibrent. J'ai testé le programme avec différents Arduino (Arduino Mega et Arduino Uno). L'arduino Uno fonctionne mieux mais donne aussi les mêmes problèmes, donc le problème n'est pas ni l'Arduino ni le programme (j'ai testé différents programmes plus basiques et la même chose arrive).

J'ai cherché des solutions par Internet et il dit que le problème est probablement l'alimentation. Je vais faire des testes pour voir si le problème c'est le fil de l'alimentation, mais sinon je va essayer avec une batterie plus grande.


Feuille d'heures

Tâche Prélude Heures S1 Heures S2 Heures S3 Heures S4 Heures S5 Heures S6 Heures S7 Heures S8 Heures S9 Heures S10 Total
Analyse du projet 0


Prologue

Semaine 1

Semaine 2

Documents Rendus