Hack NFC - Proxmark3

De Wiki de Projets IMA
Révision datée du 4 mars 2014 à 08:50 par Fromerow (discussion | contributions) (Augmentation de la portée)

Présentation

Contexte:

La technologie RFID est de plus en plus utilisées, notamment pour les cartes bancaires ou les cartes Monéo.

Plus directement, les cartes RFID sont présentes sur le campus de Lille 1, pour le paiement des repas au Restaurant Universitaire, ou pour l'ouverture de portes sécurisées.

Leurs fiabilité est donc un enjeu crucial. Il existe cependant des techniques de hackage de ces cartes : http://www.youtube.com/watch?v=7BQDgPMF_fo


Objectif :

L'objectif de ce PFE est d'étudier la vulnérabilité de ces cartes sans contacts, et de trouver un moyen de renforcer leur sécurité.


Ennoncé :

En utilisant des systèmes Proxmark 3 (http://proxmark3.com/index.html) vous commencerez par une simple copie de carte MiFare. Cela vous permettra de prendre en main l'environnement. Vous travaillerez ensuite sur les différents aspects suivants : - Amélioration des antennes pour permettre la capture de cartes à "longues distance" (entre 2 et 10 m) - Packaging de l'appareil et des nouvelles antennes dans un sac à dos - Description de procédures de mise en oeuvre automatique - Mise en place de contre-mesure Quelques liens : http://bigbrotherawards.eu.org/Le-GIE-cartes-bancaires https://code.google.com/p/readnfccc/source/browse/#svn%2Ftrunk%2FNFCCreditCardTool

Avancement du projet

17/09/2013 : Compréhension et recherches sur le sujet

Discussions avec nos encadrants pour comprendre les enjeux du projet. Prise en main du système Proxmark3, et essais de différents logiciels. L'utilitaire proxmark3 (Client Software) peut être téléchargé à cette addresse: "proxmark3.com/downloads.html". Il contient les pilotes pour permettre à un système Windows de reconaitre le matériel, ainsi que le logiciel client Proxmark3 qui permet de communiquer avec le périphérique grâce à une invite de commandes. LF = Low Frequency (125 kHz, 132.5 kHz) HF = High Frequency (13.56 MHz) UHF = Ultra High Frequency (860 MHZ, 960 MHz) Essais de lecture d'une carte RFID.


Figure 1 : Relevé d'une carte Monéo

04/10/2013 : Lecture d'une carte NFC

Première lecture d'une carte monéo, grâce à l'antenne HF.

Commande "hf mf chk *1 ? t" pour tenter l'acces aux blocs de la carte en utilisant des clefs de base. Si le secteur X utilise la clef Y, la commande : "hf mf nested X 1 A Y d" permet de cracker l'ensemble des clés de la carte, et de les enregistrer dans un fichier "dumpkeys.bin". La commande "hf mf dump" permet ensuite de lire l'ensemble des blocs de la carte, et les enregistre dans le fichier "dumpdata.bin".

Les données lues peuvent être observées facilement avec le logiciel HxD. Si on veut comparer deux relevés, le logiciel HexCmp sera plus pratique.

Vous pouvez voir sur la Figure 1 les données présentes sur la carte Monéo utilisée :


Les données sont écrites sous forme hexadécimale sur la carte, et sont traduites par le logiciel. Certaines données sont compréhensible, comme le nom ou le numéro d'étudiant, mais la plupart des données sont cryptées.


17/10/2013 : Avancée des recherches et relevés de données d'une carte

Découverte de la commande "hf mf wrbl" permettant d'écrire un bloc de données sur une carte, et de la commande "hf mf restore" permettant de restaurer les données sur une carte à l'aide d'un ancien relevé.


Figure 2 : Comparaison (30,17€ à gauche, 33,32€ à droite)


Pendant le mois d'octobre, nous avons effectué de nombreux relevés d'une carte Monéo étant utilisée régulièrement pour le paiement de repas. Nous avons pu effectuer de nombreuses comparaisons comme la suivante, en effectuant un relevé avant et un relevé après le paiement d'un repas de 3.15€.

Figure 3 : Relevé de la carte Monéo, en rouge les octets qui changent systématiquement et en vert ceux susceptibles de changer


Les symboles surlignés sont ceux qui sont modifiés, on remarque que peu de symboles sont modifiés lors de ce prélèvement.

Comme représenté sur la Figure 3, une dizaine de relevés différents nous a permis de repérer les symboles qui ne sont jamais modifiés, ceux qui le sont parfois (encadrés en vert) et ceux qui le sont toujours (encadrés en rouge).



6/11/2013  : Réécriture d'une carte NFC

Recherches sur l'organisation des données sur une carte. Le fichier Fichier:MF1ICS50FunctSpec.pdf nous a aidé dans cette recherche. Nous avons compris que chacune de nos cartes est constituée de 16 secteurs de données. Chaque secteur est constitué de 4 blocs, chaque bloc étant lui constitué de 16 paires d'octets. Sur nos relevés, chaque ligne constitue un bloc. Le dernier bloc de chaque secteur gère les autorisations d'accès à ce secteur. Il peut être représenté sous la forme suivante: AA AA AA AA AA AA KK KK KK XX BB BB BB BB BB BB ou les 12 premiers octets constituent la clé A, les 6 suivants les conditions d'accès et les 12 derniers la clé B. L'accès à chaque secteur est donc contrôlé par deux clefs, et les conditions d'accès qui définissent si un bloc peut être lu, s'il peut être écrit, et avec quelle clé. L'interprétation des 6 octets de conditions d'accès peut être faite grâce au logiciel MiFaRe Acces Conditions téléchargeable ici: http://www.sendspace.com/file/o3frc9 Sur une carte, tous les blocs dont l'adresse se termine par 3,7,B ou F sont donc réservés aux droits d'accès. Il est donc nécessaire de porter une attention particulière à la modification de ces blocs, car en fonction des autorisations attribuées un secteur peut être interdit en lecture, et dans ce cas il ne sera plus du tout utilisable, et ni modifiable.

D'autre part il est important de noter que les 12 premiers octets de chaque carte représentent l'identifiant de la carte, (4E 46 7E 16 60 88 sur la carte utilisée ici) et qu'ils ne sont pas modifiables (mis à part pour certaines cartes NFC chinoise destinées à ce genre d'opération).

Après avoir compris tout cela nous avons pu copier les données de la carte Monéo sur une autre carte NFC, exactement à l'identique, mis à part pour l'identifiant de la carte. Cependant, lors d'un essai de paiement avec cette autre carte, il y a eu une erreur, la carte n'étant pas reconnue du fait de son identifiant.

26/11/2013 : Espionnage d'échanges RFID

Après avoir chercher pendant plusieurs heures à utiliser la commande "hf mf sniff", qui ne s'est pas révélée utile finalement, nous avons trouvé comment "écouter" les données échangées entre une carte et un lecteur, à l'aide de la commande "hf 14a snoop".

Pour ce faire on a utilisé les commandes :

-"hf 14a snoop" pour sniffer et enregistrer l'échange'

-"hf 14a list" pour avoir accès à l'enregistrement

proxmark3> hf 14a snoop

  1. db# cancelled by button
  2. db# maxDataLen=3, Uart.state=0, Uart.byteCnt=1
  3. db# Uart.byteCntMax=20, traceLen=12d, Uart.output[0]

proxmark3> hf 14a list recorded activity:

ETU     :rssi: who bytes
+      0:   0: TAG 02
+ 152797:   0: TAG 00!
+ 289126:   0: TAG 02
+ 147123:   0: TAG 01
+ 147462:   0: TAG 05!
+ 147290:   0: TAG 02
+ 441954:   0: TAG 02
+ 441954:   0: TAG 02
+ 531882:   0: TAG 04  00
+    746:   0: TAG 4e  46  7e  16  60
+   2048:   0: TAG 08  b6  dd
+ 120402:   0: TAG 02
+  21846:   0: TAG 04  00
+    744:   0: TAG 4e  46  7e  16  60
+   2052:   0: TAG 08  b6  dd
+ 142234:   0: TAG 04  00
+    746:   0: TAG 4e  46  7e  16  60
+   2048:   0: TAG 08  b6  dd
+ 142220:    :     26
+   4752:    :     26
+ 142579:    :     26
+   4751:    :     26
+ 142578:    :     26
+   4750:    :     26
+ 142576:    :     26
+   4752:    :     26
+ 142579:    :     26
+   4751:    :     26

ATQA+UID+SAK = 0004 4e467e16 08 : Nous retrouvons donc l'UID de la carte NFC qui vaut 4e467e16.

L'elementary time unit (ETU) est la durée nominale des bits utilisés dans la trame.

Le "rssi" est l'intensité du signal. Il reste ici à 0. Nous avons contacté des développeurs de Proxmark qui nous ont confirmé que c'était le cas pour eux aussi, et qu'il ne fallait pas en tenir compte.

Les échanges au début de l'enregistrement ne signifient rien de particulier, ils ne sont pas à prendre en compte.

Dans ce cas, l'antenne de la Proxmark était placée à moins de 5 cm de l'échange. Notre but est de pouvoir faire ce genre de relevés à au moins 1 m.

6/12/2013 : Etude du circuit de la Proxmark

Dans le but d'augmenter la portée du lecteur de cartes, nous nous sommes intéressés à son fonctionnement.

Nous avons pu en déduire le schéma suivant :

Figure 4 : Représentation simplifiée du fonctionnement de la Proxmark

Le FPGA de la Proxmark exécute entre autres tous les algorithmes de crack.

Le FPGA transmet le signal à émettre, aux circuits amplificateurs d'émission, par les PIN PWR_OE1, PWR_OE2, PWR_OE3 et PWR_OE4. La carte comporte deux circuits amplificateurs, notés HF et BF, suivant le type de fréquence pour lequel chacun est utilisé


Vous pourrez voir ci-contre le schéma des circuits amplificateurs :

Figure 5 : Circuits amplificateurs internes à la Proxmark


Le circuit amplificateur BF se trouve dans la partie haute du schéma, encadré en rouge, tandis que le circuit amplificateur HF est encadré en bleu.

Les 8 tampons d'émission présents sur le schéma sont chacun assimilables à une capacité C0. Des recherches dans la datasheet du composant nous ont permis de connaître la valeur de cette capacité, qui est de 8pF.


L'impédance de sortie de la Proxmark peut donc être simplifie de la façon suivante :

Cadre rouge : on a 4 capacités induites par les tampons d'émission, donc 4 * C0 = 4*8 pF = 32 pF et une résistance de 33 Ohms

Cadre bleu : on a 4 capacités induites par les tampons d'émission, donc 3 * C0 = 3*8 pF = 24 pF et une résistance de 33 Ohms

Cadre vert : on a 4 capacités induites par les tampons d'émission, donc 1 * C0 = 1*8 pF = 8 pF et une résistance de 10 KOhms

En mettant en parallèle les impédances de ces trois parties du circuit, on peut déduire la valeur de l'impédance totale de sortie de la Proxmark, qui est de 21–208j.


16/12/2013 : Bilan de liaison et définition des expériences à réaliser pour la caractérisation du système

Nous avons réalisé un premier bilan de liaison du système, peu précis, en attente des expériences à venir.

Figure 6 : Premier bilan de liaison

Sur ce bilan, on retrouve en rouge le chemin d'émission et en vert le chemin de réception.

Nous avons pris contact avec M. Royes, représentant de la société Rysc Corp créatrice de notre antenne HF. D'après lui la société a conçu une antenne compatible avec la Proxmark3, mais sans en effectuer de relevés de caractéristiques.

Nous avons aussi pris rendez-vous avec M. Ducourneau, Responsable de la Plate-Forme Electronique, Electrotechnique, Instrumentation (EEI) de Polytech, afin de définir les expériences à effectuer pour la caractérisation de l'antenne fournie et le dimensionnement de l'amplificateur.

Nous avons alors défini les expériences à réaliser :

Expérience prévue avec une antenne :

=> Mesure de l'intensité traversant l'antenne.

=> Mesure du coefficient de réflexion S(1,1), à l'analyseur de réseau vectoriel avant amplification puis après amplification. Cette étape est nécessaire car à 13,56 Mhz aucune antenne de petite taille n'est vraiment adaptée. Le but du projetétant de dissimuler le système, l'antenne ne devra pas dépasser 50 cm. Il faut donc partir du principe que quelque soit l'antenne, elle ne pourra pas être adaptée. L'idée est de mesurer son coefficient de réflexion à 13,56 Mhz, pour s'assurer que l'antenne conçue ne rejette pas la plus grande partie du signal. Si ce n'est pas le cas, il faudra s'intéresser à une antenne patch, plus directive et de plus grande portée.

Expérience prévue avec deux antennes (identiques) :

=> Mesure du gain : elle nous permettra de calculer la puissance P1 à la sortie de l'antenne afin de compléter notre bilan de liaison.

=> Mesure des pertes de 0 à 1,5 m, avec un pas de 0,10 m. Cela nous permettra de quantifier les pertes dans l'air.

Nous avons à partir de là pu définir le matériel à commander pour réaliser ces expériences.

06/01/2014 : Bilan de liaison global du système

Bilan de liaison de la solution proposée

Ce bilan devait être confirmé (ou non) après la réalisation des expériences qui étaient prévues

Le raisonnement suivant concerne les puissances en Watt.

En rouge on retrouve le chemin d'émission. On a une puissance P0 en sortie de la Proxmark3.

D'après les utilisateurs elle est de 200 mW, nous n'avons pas pu la déterminer car on a pas encore reçu les embouts MQ172, donc nous avons fixé P0 = 0,2 W, Ensuite nous avons déterminé que le gain de l'amplificateur devait valoir 16 dB (soit un gain de 40). Donc après le système d'émission on retrouve une puissance P1 tel que : P1 = P0 * Gain Ampli = 0,2 W * 40 = 8 W. Ensuite le signal d'émission traverse l'antenne, on a fixé le rendement de l'antenne à 0,30, en sachant qu'on utilise notre antenne qui est accordée à 13,56 Mhz. Sinon on aurait fixé le rendement à 20 / 25% ce qui est la norme pour la plupart des antennes patch s, non accordées, à cette fréquence. P2 vaut donc 2,4 W.

Ensuite pour calculer P3, la puissance qui atteint la carte NFC, on utilise la formule suivante :

P3=P2-P2*((4* π*distance (mètre)*Fréquence)/célérité)^2=1,3 W

en prenant une distance de 1 mètre.

En fixant le rendement de la carte NFC à 0.8, on trouve une puissance émise de la cartes P4 de 1 W. En utilisant la même formule de perte dans l'air, que dans le cas de l'émission, on retrouve une puissance de réception P5 = 0,77 W, qui arrive au niveau de l'antenne. A l'entrée de l'amplificateur faible bruit on retrouve alors une puissance P6 = 0,023 W. Pour retrouver une puissance de réception permettant une détection par la Proxmark3 on suppose qu'il faut la même puissance d'émission, soit 0,2 W, même si en pratique on se doute que si la puissance de réception est un peut plus faible il n'y aura pas de problèmes. On conclut donc que notre amplificateur faible bruit doit avoir un gain de 10 afin d'obtenir une puissance de réception de 0,230 W à l'entrée de la Proxmark3. Il devra aussi contenir un filtre passe-bande à 13,56 MHz afin de ne laisser passer que le signal utile et de ne pas garder le bruit


20/01/2014 : Etude de la chaîne d'émission

Le signal de sortie de la Proxmark étant d'environ 0,2 W, nous aimerions l'amplifier de façon à obtenir un signal plus proche de 7,5 W. Pour cela, nous avons pensé à modifier si possible la valeur d'un registre du FPGA qui permettrait de gérer la puissance du signal de sortie. Cependant, en parcourant les différents fichiers du programme FPGA, nous n'avons pas trouvé de tel registre.

27/01/2014 : Etude de la chaîne de réception

Pour la chaine de réception, nous avons conclu à l'aide de notre de bilan de liaison, qu'il fallait un amplificateur de 40 en gain. Comme la tension en sortie de la Proxmark3 va jusqu'à 10V, cela n'a pas de sens de l'amplifier, nous faisons donc un amplificateur en courant. Un amplificateur push - pull à base de paires de Darlington a été dimensionné. Le résultat est disponible plus bas. Il est composé de deux 2N2222A et de deux transistors 2N2907.


03/02/2014 : Etude des possibilités de sécurisation

A partir de cette date nous commençons à rechercher les nouveautés concernant la sécurité NFC. L'enjeu étant de savoir quels sont les possibilités à l'heure d'aujourd'hui, pour empêcher les hackers de lire le contenu de nos cartes à distance. Une solution bien connu est celle de la cage de Faraday

04/02/2014 : Simulation de la solution et optimisation

Comme la commande des embouts pour connecter les cartes, ne sont pas encore arrivés, Nous nous contenterons cette semaine de simuler notre système sur Multisim, et ceci afin d'obtenir les gains nécessaires à partir du bilan de liaison.

17/02/2014 : Réalisation des PCBs, de l'antenne et des circuits

Cette semaine nous avons réalisé les PCBs sous altium, de notre solution de chaîne d'émission et de réception. Cependant la machine qui réalise les circuits réels est cassée, c'est pourquoi on ne peut pas effectuer les tests. En effet, à la fréquence de 13,56 Mhz, on ne peut pas travailler sur des boards habituels car le signal serait dégradé.

Nous avons fait quelques expériences à l'aide de plaques à essais, cependant ces plaques ne sont pas appropriées pour notre travail en hautes fréquences. Nous avons donc travaillé à la conception de circuits imprimés, avec le logiciel Altium Designer.

Conception des Schematics : Etant donné que nous n’avions pas pu faire les mesures exactes des courants et puissances d’entrée et de sortie de la carte Proxmark, nous avons réalisé deux schémas d’amplificateurs. En plus du Darlington en push-pull, nous avons aussi dimensionné un ampli de plus faible puissance ne comportant qu'un seul transistor 2N2222A.

Pour pouvoir créer les cartes électroniques, il était nécessaire de créer des PCB sous Altium Designer. Nous avons donc commencé par réaliser des schémas électroniques, comme suit :

Amplificateur de courant à faible puissance
Montage de Darlington PushPull
Amplificateur faible bruit

Pour connecter les entrées et sorties de ces circuits, nous avions prévu d’utiliser des connecteurs du fabriquant AMP, disponibles au magasin électronique de l’école. Ces connecteurs étant différents de ceux présents dans les librairies du logiciel, nous avons dû les ajouter. Nous avons pour cela cherché sur internet des librairies contenant ces composants, mais sans succès. Finalement nous avons créé une librairie contenant trois connecteurs AMP : 1 à 2x2, 1 à 2x4 et 1 à 2x5 broches. Nous avons pour cela dû créer la librairie Schematic. Vous pourrez voir le schéma d’un composant ci-après.

Création du Schématic d’un connecteur AMP 2x5

21/02/2014 : Attente de l'éventuelle arrivée des composants commandés

Malheureusement le matériel commandé n'est pas arrivé jusqu'au dernier jours de notre PFE. Désormais nous savons que lorsqu'un projet mêle software et hardware, il faut s'y prendre à l'avance pour préparer la partie Hardware, car elle réclame en général beaucoup plus de matériel que la partie Software.


2.2. Caractérisation de l’antenne

L’antenne qui nous a été fournie est une antenne de l'entreprise Rysc Corp. Elle nous permet de travailler à 13,56Mhz, cependant avec cette antenne et la Proxmark3, la distance de lecture n'est que de 2 à 4 centimètres. De plus, en regardant son circuit qui est un fil de cuivre enroulé de quelques dizaines de centimètres, on a conclu qu'elle n'était pas totalement optimisée pour être accordée à 13,56Mhz, en sachant que la longueur d'onde à cette fréquence est d'environ 20 mètres. Après avoir pris contact avec M. Jason Royes, un représentant de Rysc Corp, nous avons appris que la société a conçu une antenne compatible avec la Proxmark3 (pour la fréquence 13,56 MHz), mais sans en relever les caractéristiques. Nous avions donc décidé d'étudier les caractéristiques de l'antenne par les expériences prévues, afin d’y ajouter un système d’amplification, pour augmenter sa portée.


2.3. Expériences devant être réalisées


Expériences prévues avec une seule antenne (une fois avec l'antenne fournie, et une fois avec l'antenne conçue) : - mesure de l'intensité traversant l'antenne : On peut l'effectuer en mesurant l'intensité avec un ampèremètre en forme d'anneau qu'on placerait autour du fil qui permet l'émission. Ceci aurait été possible avec un embout MQ172 dont on aurait séparé les fils d'émission et de réception. Dans le câble de base qui nous a été fourni, les fils d'émission et de réception sont liés dans la même gaine, ce qui fait qu'on obtient une intensité qui ne correspond ni à l'émission seule, ni à la réception seule, lorsqu'on mesure avec un ampèremètre à anneau. - mesure du coefficient de réflexion S(1,1) avant amplification, à l’aide de l'analyseur de réseau vectoriel, - mesure de ce même coefficient après amplification. Le but étant de dissimuler le système, l'antenne ne pourra excéder 50 cm.. L'idée est de mesurer le coefficient de réflexion à 13,56 Mhz pour étudier si l'antenne conçue ou l'antenne patch qu'on nous a fournie, ne rejette pas la plus grande partie du signal.

Expériences prévues avec 2 antennes (identiques) : - mesure du gain de l'antenne fournie et l'antenne qu'on a conçue: Cette mesure nous permettra de calculer la puissance P1 à la sortie de l'antenne, afin de confirmer notre bilan de liaison : Grâce à la loi de Propagation en espace libre :

Chaine de réception

Pour la chaîne de retour de notre système, nous avons prévu la conception d'un amplificateur faible bruit. Un amplificateur faible bruit (ou LNA en anglais pour Low Noise Amplifier) est un dispositif électronique chargé de mettre en forme de faibles signaux provenant d'une antenne. On le place généralement à proximité de la chaîne de traitement des informations reçues de manière à minimiser les pertes en ligne. On le nomme parfois préamplificateur. Les amplificateurs sont souvent utilisés pour les systèmes qui, comme le notre, travaillent à des fréquences élevées.

Suivant les fréquences, l'élément actif d'un amplificateur d'entrée à faible bruit varie : le FET est le moins bruyant jusqu'à quelques dizaines de mégahertz, suivi par le transistor bipolaire (particulièrement SiGe), puis de nouveau le FET en GaAs au-delà de quelques gigahertz.

Notre amplificateur faible bruit sera composé d'un transistor permettant d'amplifier la tension de retour et combiné avec un filtre passe bande.


Amplificateur du LNA












Voici notre filtre passe bande à 13,56 Mhz :


Filtre passe-bande à 13,56 Mhz















Et voici ces performances, dans la zone de 1 à 30 Mhz, avec une échelle linéaire :

Performances du filtre passe bande dans la zone de 1 à 30Mhz, en échelle linéaire


















On observe qu’à la fréquence de 13,56 Mhz, notre filtre à un gain très proche de 1, et un gain très nettement inférieur autour, ce qui nous permet de renvoyer vers la Proxmark, que la fréquence qui nous intéresse, autour de 13,56 Mhz

Voici le circuit final de l'amplificateur faible bruit :


notre LNA







Simulation Multisim de notre LNA














On observe que pour une entrée d'amplitude 0,4 V, on a environ un gain de 10, soit 4 Volts en sortie. Ce gain de 10 est nécessaire pour permettre la détection du signal de retour à travers la Proxmark3. Sa valeur provient du bilan de liaison effectué précédemment.

Documentation

Analyse des données :

[CEPS Technical Specification]

Circuit Proxmark3

[1]