IMA5 2019/2020 P13 : Différence entre versions

De Wiki de Projets IMA
(Composition du système déjà existant)
(Composition du système déjà existant)
Ligne 28 : Ligne 28 :
 
*Un châssis National Instrument Compact DAQ
 
*Un châssis National Instrument Compact DAQ
 
*Une carte d'entrée sortie National Instrument, disposée dans le châssis Compact DAQ
 
*Une carte d'entrée sortie National Instrument, disposée dans le châssis Compact DAQ
*<span style="color:red;">Le "Hybrid Energy Lab" composé de différents éléments énumérés de haut en bas visiblement sur la vignette de droite:
+
*Le "Hybrid Energy Lab" composé de différents éléments énumérés de haut en bas visiblement sur la vignette de droite:
 
**Un module de commande composé d'une interface homme machine permettant de contrôler le système sur place.Les algorithmes de commande du système ainsi que l'interface homme machine sont intégrés dans le Panel PC "AFL-07A-N270" de chez iEi.
 
**Un module de commande composé d'une interface homme machine permettant de contrôler le système sur place.Les algorithmes de commande du système ainsi que l'interface homme machine sont intégrés dans le Panel PC "AFL-07A-N270" de chez iEi.
 
**La charge électronique qui permet de simuler la consommation d'énergie. Elle dispose de plusieurs mode de régulation.
 
**La charge électronique qui permet de simuler la consommation d'énergie. Elle dispose de plusieurs mode de régulation.

Version du 30 septembre 2019 à 12:15


Présentation générale

Etudiants : Antoine Branquart, Juliette Obled
Encadrant : Anne Lise Gehin

Objectifs

Développer des algorithmes et implanter une interface de supervision pour gérer de manière optimale des différents modes de fonctionnement d'une pile à combustible.

Description

L'école, en partenariat avec le laboratoire CRIStAL dispose d'une plate-forme technologique permettant d'illustrer des enseignements dans le domaine des énergies propres. Cette plate-forme est constituée d'une éolienne, de deux panneaux photovoltaïques, d'un électrolyseur, d'une unité de stockage de l'hydrogène et d'une pile à combustible. L'idée est d'utilisée l'énergie produite par les sources renouvelables lorsqu'elles sont disponibles pour produire de l'hydrogène à partir de l'électrolyse de l'eau puis de réutiliser ultérieurement cet hydrogène pour produire de l'électricité via la pile à combustible, ceci permettant de palier l'intermittence des sources primaires.
La réalisation de ce projet de fin d'études s'inscrit dans le projet européen Electrons to high value Chemical products (E2C) ". Ce projet commun à plusieurs universités et centres de recherche localisés dans les régions côtières de la Manche a pour objectif de convaincre l'industrie d'investir dans le développement et la mise en œuvre de technologies qui utilisent les énergies renouvelables pour remplacer les sources d'énergie du pétrole et du gaz dans la production de produits chimiques.

Composition du système déjà existant

Plateforme technologique à disposition

Pile à combustible de la plateforme

Sur la photo ci-dessus on peut voir le matériel utilisé faisant partie de la plateforme technologie acquit en 2016 par l'université, à savoir:

  • Deux panneaux photovoltaïque
  • Une éolienne
  • Capteur de radiation solaire
  • Capteur de température au niveau des panneaux
  • Anémomètre qui informe de la vitesse et du sens du vent pour l'éolienne
  • Une armoire de commande reliée aux sources d'énergie composée de:
    • Un automate programmable industriel Beckhoff
    • Capteur de tension et de courant
    • Batterie
    • Onduleur et transformateur afin d'obtenir une sortie 230V/50Hz
  • Un électrolyseur pour la production d'hydrogène
  • Un châssis National Instrument Compact DAQ
  • Une carte d'entrée sortie National Instrument, disposée dans le châssis Compact DAQ
  • Le "Hybrid Energy Lab" composé de différents éléments énumérés de haut en bas visiblement sur la vignette de droite:
    • Un module de commande composé d'une interface homme machine permettant de contrôler le système sur place.Les algorithmes de commande du système ainsi que l'interface homme machine sont intégrés dans le Panel PC "AFL-07A-N270" de chez iEi.
    • La charge électronique qui permet de simuler la consommation d'énergie. Elle dispose de plusieurs mode de régulation.
    • Deux batteries au plomb
    • Un module de gestion de l'énergie. Il transforme la tension de sortie non régulée de la pile à combustible en une tension régulée 24V et une tension alternative 110/230V. Il charge aussi les batteries et alimente les consommateurs interne du système.
    • La pile à combustible Nexa 1200
    • Réservoir d'hydrogène qui peut être équipé de trois différentes bouteilles à hydrures métalliques


Etat de l'art

Contexte

Avantages des différentes sources d'énergies

De nos jours, le réchauffement climatique est au centre de toutes les problématiques mondiales. Les ressources fossiles que nous utilisons, en plus de s’épuiser, polluent énormément. Le monde cherche donc à se tourner vers l’utilisation d’énergies renouvelables. Cependant, aussi prometteuses qu’elles soient, les énergies renouvelables (issues du rayonnement solaire, du vent, de l’eau) ne proposent pas d’énergie à la demande car dépendent de nombreux paramètres tels que la météo au moment dit, l’heure de la journée et le moment de l’année. Il se pose donc un problème de stockage de ces énergies pour réussir à se libérer totalement des énergies fossiles. C’est dans ce cadre que s’est constitué le projet européen “ Electrons to high value Chemical products (E2C) ". Pour la partie située au sein de l’Université de Lille, il consiste à étudier la combinaison de plusieurs énergies renouvelables afin d’en sortir une production la moins variable possible, ainsi que le stockage du surplus vers des batteries ainsi que sous forme d’hydrogène par l’électrolyse de l’eau.
Les avantages de ce mode de stockage sont les suivants : en l'associant au stockage par batterie disponible dans l'armoire de commande de la plateforme, on obtient un gain non seulement en autonomie mais aussi en disponibilité en énergie, comme on peut le voir sur le graphique ci contre :

Thèse d'Ibrahim Abdallah sur le système

versions v1 et v2 de stockage de l'énergie

Cette thèse est une étude appliquée à notre système, et contient notamment une description de celui-ci.
Le but est d’utiliser l’énergie fournie par les ressources renouvelables (éolienne, panneau solaire) tant que cela est possible, en stockant le surplus dans les batteries et sous forme hydrogène et en utilisant ce stockage en cas de besoin. Le scénario théorique de fonctionnement normal est le suivant :
- Si la puissance offerte est très supérieure à celle demandée, alors le surplus est stocké dans les batteries ainsi que sous forme hydrogène (tant que la pression dans les bombonnes est inférieure à 10bar).
- Si la puissance proposée est toujours supérieure à la demande mais de manière moins importante alors le stockage est uniquement dirigé vers les batteries.
- Si la puissance offerte est inférieure à la demande, le stockage dans les batteries est utilisé puis l’hydrogène et enfin le réseau électrique si cela est nécessaire.
Cependant, la pile à combustible n'est pour l'instant pas reliée au reste du système de manière automatisée. Elle est contrôlée par un automate différent du reste, et c'est manuellement que la fonction de la PAC est choisie. Ces informations sont disposées aux pages 139 à 141 de la thèse dans le chapitre 4.

Interface Heliocentris

Pour ce projet, Heliocentris a pu fournir une base de composants ainsi que des interfaces de lecture des données. Voici donc ci dessous les logiciels déjà existants, avec à gauche celui du système énergies renouvelables et électrolyseur/batteries, et à droite celui de la pile à combustible.

Logiciel Heliocentris de la première partie fourni à l’achat du système complet
Logiciel Heliocentris de la PAC fourni à l’achat

Cependant, ces logiciels ne sont pas flexibles et ne peuvent pas être modifiés. De nouveaux composants comme des capteurs ou même une deuxième éolienne ne peuvent donc pas être ajoutés, et la commande ou la supervision ne peuvent pas être adaptées. Dans le cadre d’un projet de recherche ils ne sont donc pas exploitables.

PFE 2018 de François-Xavier Cockenpot

interface du système complet réalisée en 2018

L’année dernière, l’IMA5 François-Xavier Cockenpot a également pu inscrire son PFE dans le projet européen E2C, afin de réaliser l’interface de commande et de supervision de la production de l’hydrogène (électrolyseur).
Il a tout d’abord travaillé sur la communication avec l’automate, en récupérant et identifiant les trames grâce au logiciel Wireshark. Une fois les variables récupérées il a automatisé la commande de l’électrolyseur et réalisé l’interface de supervision du système complet avec le logiciel LabView.

commande de l'électrolyseur réalisée en 2018

L’interface de supervision contient donc une partie de détection d’erreur des différents éléments basée sur des courbes de tendance des constructeurs et des valeurs issues d’équations théoriques.

Préparation du projet

Descriptif du système à commander et à superviser

Principe de fonctionnement d'une cellule pour une pile à membrane à échange de protons

L'objectif de notre PFE est donc de continuer sur les pas du PFE 2018 du point précédent en réalisant la commande et supervision cette fois de la production d’électricité depuis l’hydrogène grâce à la pile à combustible.
Le système étudié pendant le PFE de 2018 permet donc d'obtenir et de stocker de l'hydrogène à partir de sources d'énergies renouvelables. Le système sur lequel nous allons travailler utilisera donc cet hydrogène comme carburant pour la pile à combustible afin de constituer une partie de la plateforme technologique.
La pile à combustible permet d'obtenir de l'électricité à partir de l'oxydation sur une électrode de l'hydrogène couplée à la réduction sur l'autre électrode d'un oxydant, tel que l'oxygène de l'air. Ce fonctionnement revient finalement à l’électrolyse inverse de l'eau. On peut voir les équations qui résultent de cette réaction sur le schéma disposé à droite du paragraphe.
La tension et le courant produits par cette pile sont continus. Ils seront réutilisés pour : alimenter la charge électronique disponible au sein du système ou bien tout simplement alimenter une lampe pour s'assurer du bon fonctionnement de la commande du système
Il faudra donc commander les différents paramètres permettant la production d'électricité via la pile à combustible, détecter les erreurs qui empêche cette production ainsi que surveiller les valeurs entrantes et sortantes de la pile via une interface homme-machine permettant de visualiser l'ensemble du système.

Cahier des charges

Dans le cadre du projet européen E2C du développement de l’utilisation des énergies renouvelables, Polytech détient une plateforme d’étude composée notamment d’une pile à combustible. Celle-ci permet de transformer l’énergie issues d’énergies renouvelables précédemment stockée sous forme d’hydrogène (grâce à un électrolyseur) en électricité.
Lors de ce projet, l’étude sera tout d’abord centrée sur la pile à combustible (PAC). Pour palier au logiciel de commande et supervision trop contraignant déjà existant, le but sera de développer une commande plus flexible de l’automate ainsi que d’implémenter une interface de supervision. Si cela est possible, la commande et/ou l’interface seront mises en commun avec le reste du système (PLC, électrolyseur, batteries). L’ajout d’un système externe sera mis en place afin de tester l’efficacité de la production d’électricité du projet.

Choix techniques : matériel et logiciel

Matériel

  • carte d'entrées sorties ?

Logiciel

Le choix du logiciel se porte vers LabVIEW développé par National Instrument qui est donc compatible avec le châssis Compact DAQ connecté à un PC. LabVIEW s'appuie sur le language graphique pour la conception de systèmes de mesure et de contrôle.

  • Wireshark pour l'identification des entrées/sorties
  • RTW de Matlab pour la commande (à fixer)
  • Labview pour l'interface (et la commande si pas RTW).

Liste des tâches à effectuer

Voici une liste non exhaustive concernant le plan d'action du projet. Certaines parties contiendront bien entendu des sous-tâches supplémentaires.

  • Acclimatation avec le système, mise en place du cahier des charges, renseignement sur les logiciels Labview, RTW, Wireshark et lecture des documentations
  • Utilisation du logiciel Wireshark pour reconnaître les entrées/sorties de l’automate
  • Commande du système avec RTW
  • Supervision du système avec RTW
  • Interface Labview
  • Regrouper les deux interfaces
  • Regrouper l’ensemble du système
  • Ajout d'un système externe pour tester l'efficacité de la production d'énergie

Calendrier prévisionnel

Réalisation du Projet

Semaines du 9 au 29 septembre

Durant ces premières semaines, nous avons rempli les premières parties de ce wiki en établissant la description du projet et du système, l'état de l'art ainsi que le cahier des charges avec les tâches à effectuer.
Pour cela nous nous sommes renseignés en lisant les documentations fournies, les anciens travaux ainsi qu'en ayant des réunions avec Mme Gehin. Nous avons également pu appréhender l'utilisation de la PAC avec le thésard Sumit Sood.

De plus, nous avons pu noter les problèmes que nous allons potentiellement rencontrer :

  • Deux automates différents. L’automate contrôlant la PAC est un autre que celui contrôlant le reste du système. De ce fait, nous ne pouvons pas simplement reprendre le travail de récupération des données fait par FX Cockenpot mais recommencer de zéro. De plus, pour la même raison, le regroupement des deux interfaces dans la suite du PFE va probablement poser problème car les deux automates utilisent peut-être des adresses similaires pour des actions/capteurs différents.
  • Automatisation générale du process. Pour recharger les bouteilles d’hydrogène, soit un opérateur sort une bouteille de la PAC pour la connecter à l’électrolyseur. Pour cela, la PAC doit être éteinte et des câbles débranchés pour pouvoir ouvrir la partie concernée. Une autre manière de recharger les bouteilles est de connecter directement l’électrolyseur à la PAC. De cette manière, la PAC doit être éteinte lorsque les bouteilles se rechargent donc les deux automates doivent être capables de communiquer entre eux afin que l’électrolyseur ne se mette pas en route si la PAC est en fonctionnement.

Semaine du 30 septembre au 6 octobre

Utilisation de Wireshark afin d'identifier les entrées/sorties de l'automate de la PAC.

Semaine du 7 au 13 octobre

=Documents Rendus=