IMA5 2019/2020 P13 : Différence entre versions
(→Descriptif du système à commander et à superviser) |
(→Thèse d'Ibrahim Abdallah sur le système) |
||
Ligne 38 : | Ligne 38 : | ||
===Thèse d'Ibrahim Abdallah sur le système=== | ===Thèse d'Ibrahim Abdallah sur le système=== | ||
− | < | + | [https://www.theses.fr/223838284 Cette thèse ] est une étude appliquée à notre système, et contient notamment une description de celui-ci.<br> |
+ | Le but est d’utiliser l’énergie fournie par les ressources renouvelables (éolienne, panneau solaire) tant que cela est possible, en stockant le surplus dans les batteries et sous forme hydrogène et en utilisant ce stockage en cas de besoin. Le scénario fonctionnement normal est le suivant :<br> | ||
+ | - Si la puissance offerte est très supérieure à celle demandée (P>200W), alors le surplus est stocké dans les batteries ainsi que sous forme hydrogène (tant que la pression dans les bombonnes est inférieure à 10bar).<br> | ||
+ | - Si la puissance proposée est toujours supérieure à la demande mais de manière moins importante (100W < P < 200W) alors le stockage est uniquement dirigé vers les batteries.<br> | ||
+ | - Si la puissance offerte est inférieure à la demande (P<100W), le stockage dans les batteries est utilisé puis l’hydrogène et enfin le réseau électrique si cela est nécessaire.<br> | ||
+ | Ces informations sont disposées aux pages 139 à 141 dans le chapitre 4.<br> | ||
+ | |||
===Interface Heliocentris=== | ===Interface Heliocentris=== | ||
Pour ce projet, Heliocentris a pu fournir une base de composants ainsi qu’une première interface de lecture des données. Voici donc ci dessous le logiciel déjà existant.<br> | Pour ce projet, Heliocentris a pu fournir une base de composants ainsi qu’une première interface de lecture des données. Voici donc ci dessous le logiciel déjà existant.<br> |
Version du 22 septembre 2019 à 16:53
Sommaire
Présentation générale
Etudiants : Antoine Branquart, Juliette Obled
Encadrant : Anne Lise Gehin
Objectifs
Développer des algorithmes et implanter une interface de supervision pour gérer de manière optimale des différents modes de fonctionnement d'une pile à combustible.
Description
L'école, en partenariat avec le laboratoire CRIStAL dispose d'une plate-forme technologique permettant d'illustrer des enseignements dans le domaine des énergies propres. Cette plate-forme est constituée d'une éolienne, de deux panneaux photovoltaïques, d'un électrolyseur, d'une unité de stockage de l'hydrogène et d'une pile à combustible. L'idée est d'utilisée l'énergie produite par les sources renouvelables lorsqu'elles sont disponibles pour produire de l'hydrogène à partir de l'électrolyse de l'eau puis de réutiliser ultérieurement cet hydrogène pour produire de l'électricité via la pile à combustible, ceci permettant de palier l'intermittence des sources primaires.
La réalisation de ce projet de fin d'études s'inscrit dans le projet européen Electrons to high value Chemical products (E2C) ". Ce projet commun à plusieurs universités et centres de recherche localisés dans les régions côtières de la Manche a pour objectif de convaincre l'industrie d'investir dans le développement et la mise en œuvre de technologies qui utilisent les énergies renouvelables pour remplacer les sources d'énergie du pétrole et du gaz dans la production de produits chimiques.
Composition du système déjà existant
Sur la photo ci-dessus on peut voir le matériel utilisé faisant partie de la plateforme technologie acquit en 2016 par l'université, à savoir:
- Deux panneaux photovoltaïque
- Une éolienne
- Capteur de radiation solaire
- Capteur de température au niveau des panneaux
- Anémomètre qui informe de la vitesse et du sens du vent pour l'éolienne
- Une armoire de commande reliée aux sources d'énergie composée de:
- Un automate programmable industriel Beckhoff
- Capteur de tension et de courant
- Batterie
- Onduleur et transformateur afin d'obtenir une sortie 230V/50Hz
- Un électrolyseur pour la production d'hydrogène
- Un châssis National Instrument Compact DAQ
- Une carte d'entrée sortie National Instrument, disposée dans le châssis Compact DAQ
Etat de l'art
Contexte
De nos jours, le réchauffement climatique est au centre de toutes les problématiques mondiales. Les ressources fossiles que nous utilisons, en plus de s’épuiser, polluent énormément. Le monde cherche donc à se tourner vers l’utilisation d’énergies renouvelables. Cependant, aussi prometteuses qu’elles soient, les énergies renouvelables (issues du rayonnement solaire, du vent, de l’eau) ne proposent pas d’énergie à la demande car dépendent de nombreux paramètres tels que la météo au moment dit, l’heure de la journée et le moment de l’année. Il se pose donc un problème de stockage de ces énergies pour réussir à se libérer totalement des énergies fossiles. C’est dans ce cadre que s’est constitué le projet européen “ Electrons to high value Chemical products (E2C) ". Pour la partie située au sein de l’Université de Lille, il consiste à étudier la combinaison de plusieurs énergies renouvelables afin d’en sortir une production la moins variable possible, ainsi que le stockage du surplus vers des batteries ainsi que sous forme d’hydrogène par l’électrolyse de l’eau.
Les avantages de ce mode de stockage sont les suivants : en l'associant au stockage par batterie disponible dans l'armoire de commande de la plateforme, on obtient un gain non seulement en autonomie mais aussi en disponibilité en énergie, comme on peut le voir sur le graphique ci contre :
Thèse d'Ibrahim Abdallah sur le système
Cette thèse est une étude appliquée à notre système, et contient notamment une description de celui-ci.
Le but est d’utiliser l’énergie fournie par les ressources renouvelables (éolienne, panneau solaire) tant que cela est possible, en stockant le surplus dans les batteries et sous forme hydrogène et en utilisant ce stockage en cas de besoin. Le scénario fonctionnement normal est le suivant :
- Si la puissance offerte est très supérieure à celle demandée (P>200W), alors le surplus est stocké dans les batteries ainsi que sous forme hydrogène (tant que la pression dans les bombonnes est inférieure à 10bar).
- Si la puissance proposée est toujours supérieure à la demande mais de manière moins importante (100W < P < 200W) alors le stockage est uniquement dirigé vers les batteries.
- Si la puissance offerte est inférieure à la demande (P<100W), le stockage dans les batteries est utilisé puis l’hydrogène et enfin le réseau électrique si cela est nécessaire.
Ces informations sont disposées aux pages 139 à 141 dans le chapitre 4.
Interface Heliocentris
Pour ce projet, Heliocentris a pu fournir une base de composants ainsi qu’une première interface de lecture des données. Voici donc ci dessous le logiciel déjà existant.
Cependant, ce logiciel n’est pas flexible et ne peut pas être modifié. De nouveaux composants comme des capteurs ou même une deuxième éolienne ne peuvent donc pas être ajoutés, et la commande ou la supervision ne peuvent pas être adaptées. Dans le cadre d’un projet de recherche il n’est donc pas exploitable.
PFE 2018 de François-Xavier Cockenpot
L’année dernière, l’IMA5 François-Xavier Cockenpot a également pu inscrire son PFE dans le projet européen E2C, afin de réaliser l’interface de commande et de supervision de la production de l’hydrogène (électrolyseur).
Il a tout d’abord travaillé sur la communication avec l’automate, en récupérant et identifiant les trames grâce au logiciel Wireshark. Une fois les variables récupérées il a automatisé la commande de l’électrolyseur et réalisé l’interface de supervision du système complet avec le logiciel LabView.
L’interface de supervision contient donc une partie de détection d’erreur des différents éléments basée sur des courbes de tendance des constructeurs et des valeurs issues d’équations théoriques.
Préparation du projet
Descriptif du système à commander et à superviser
L'objectif de notre PFE est donc de continuer sur les pas du PFE 2018 du point précédent en réalisant la commande et supervision cette fois de la production d’électricité depuis l’hydrogène grâce à la pile à combustible.
Le système étudié pendant le PFE de 2018 permet donc d'obtenir et de stocker de l'hydrogène à partir de sources d'énergies renouvelables. Le système sur lequel nous allons travailler utilisera donc cet hydrogène comme carburant pour la pile à combustible afin de constituer une partie de la plateforme technologique.
La pile à combustible permet d'obtenir de l'électricité à partir de l'oxydation sur une électrode de l'hydrogène couplée à la réduction sur l'autre électrode d'un oxydant, tel que l'oxygène de l'air. Ce fonctionnement revient finalement à l’électrolyse inverse de l'eau. On peut voir les équations qui résultent de cette réaction sur le schéma disposé à droite du paragraphe.
La tension et le courant produits par cette pile sont continus. Ils seront réutilisés pour : savoir ce qu'on fait de cette électricité
Il faudra donc commander les différents paramètres permettant la production d'électricité via la pile à combustible, détecter les erreurs empêchant cette production ainsi que surveiller les valeurs entrantes et sortantes de la pile via une interface homme-machine permettant de visualiser l'ensemble du système.
Cahier des charges
Choix techniques : matériel et logiciel
Matériel
Logiciel
Le choix du logiciel se porte vers LabVIEW développé par National Instrument qui est donc compatible avec le châssis Compact DAQ connecté à un PC.
LabVIEW s'appuie sur le language graphique pour la conception de systèmes de mesure et de contrôle.