Micro-robots auto-organisés : Différence entre versions
(→Conception carte électronique) |
(→Etude préalable) |
||
Ligne 284 : | Ligne 284 : | ||
== Code == | == Code == | ||
//premiers prototypes | //premiers prototypes | ||
+ | |||
+ | |||
+ | == Partie mécanique == | ||
+ | |||
+ | Notre projet nous impose d'avoir un robot le plus petit possible et à bas coûts. Nous avons choisi d'utiliser notre carte électronique comme base de notre robot. Comme nos robots doivent vibrer pour avancer, nous placerons des petites pattes métallique pour que le robot soit sur-élevé. | ||
+ | |||
+ | Pour alimenter nos robots, nous devrions avoir des batteries. Ces batteries sont cependant un peu grande (7 cm de longueur), mais c'était le format le moins cher. Pour fixer les batteries aux robots, on a décidé de créer une petite pièce imprimer à l'imprimante 3D du Fablab. Cette solution nous permettra de construire une pièce légère. | ||
+ | Pour emboiter la carte électronique et notre pièce en 3D, nous avons percé la carte électronique à quatre endroits différents. Ces quatre trous de fixation ont été placés là où la carte électronique nous le permettait. Nous avons donc construit notre pièce 3D en fonction de ces 4 points de fixation. |
Version du 8 avril 2016 à 17:33
Présentation générale du projet
Objectif
Le but de ce projet est de concevoir et fabriquer des robots mobiles relativement petits, simples et peu coûteux. Les robots devront pouvoir communiquer entre eux par infrarouge. La simplicité et le bas coût de fabrication des robots doit permettre d'en fabriquer en nombre suffisant pour simuler des comportements d'essaim d’insectes.
Cahier des charges
Suite à un échange de mails avec Alexandre Boé, nous sommes parvenu à un premier cahier des charges ainsi qu'a une liste de matériel.
Suite à une entrevue avec notre tuteur Alexandre Boé nous avons remanier notre cahier des charges afin de se rapprocher de l'objectif. En effet notre premier cahier des charges décrivait un robot roulant, lourd et un peu cher. Notre cahier des charges actuel décrit un robot qui se déplace par vibrations.
Partie mécanique
- Par soucis d'économie et de limitation de la masse du robot, le châssis du robot sera constitué de la carte électronique et de cylindres métalliques très fins faisant offices de pattes.
- Le robot se déplacera par des vibrations générées par deux moteurs à courant continu utilisés dans les vibreurs de téléphones ou de manettes.
Partie électronique
- Toute l'électronique (que ce soit la gestion d'énergie, les capteurs ou l'intelligence embarquée) sera placée sur un seul circuit imprimé.
- L'énergie sera fournie par une batterie 5V (la capacité sera à déterminé après estimation de la consommation électrique du robot).
- Un régulateur de tension linéaire fournira l'énergie de la batterie au robot.
- Les moteurs seront commandés par des montages hacheurs constitués d'un transistor et d'une diode.
- La communication infrarouge sera réalisée par plusieurs ensembles émetteurs/récepteurs. Les émetteurs seront des diodes infrarouges et les récepteurs seront des photos transistors.
- Un microcontrôleur ATmega328P-au contiendra l'intelligence du robot.
Liste de matériel nécessaire
Composants | Liens vers fournisseurs | Prix unitaire | Quantité pour 1 robot |
---|---|---|---|
Microcontrôleur Atmega 328P-AU | [1] | 2,74€ | 1 |
Moteur vibreur | [2] | 3,65€ | 2 |
Batterie lithium ion | [3] | 13,06€ | 1 |
Chargeur de batterie lithium ion | [4] | 0,79€ | 1 |
Régulateur de tension | [5] | 0,75€ | 1 |
Cable micro USB / USB | X | X | 1 |
Micro USB - type B connecteur | [6] | 1,76€ | 1 |
Photo transistor | [7] | 0,16€ | 8 |
LED IR | [8] | 0,16€ | 4 |
LED CMS rouge | [9] | 0,19 | 2 |
LED CMS verte | [10] | 0,13 | 1 |
LED CMS bleu | [11] | 0,31 | 1 |
Interrupteur | X | X | 1 |
Transistor NPN | [12] | 0,25€ | 2 |
Diode (roue libre) | [13] | 0,25€ | 2 |
Résistance 470 ohm | [14] | 0,0171€ | 12 |
Résistance 4,7 kohm | [15] | 0,0185€ | 10 |
Liste des tâches
- Spécification des besoins
- Étude de consommation de la carte
- Réalisation de la carte électronique
- Choix des composants (valeurs des résistances, condensateurs)
- Réalisation du PCB
- Dimensionner le corps du robot
- Fabrication d'un premier robot
- Test de la carte
- Fabrication du deuxième robot
- Programmation de l'atmega
Répartition du travail
Avant le début officiel de notre projet nous avons rencontré Mr Boé pour mettre au point notre cahier des charges, notamment sur la technologie à utiliser et la taille des robots.
Lundi 12-14h | Mercredi 14-18h | Jeudi 8-10h | |
---|---|---|---|
Semaine 1 | 25/01 - Choix des actions des robots | 27/01 - Recherche des composants | 26/01 - Début du schéma de la carte |
Semaine 2 | 01/02 - Recherche des composants | 03/02 - Modification des composants (traversants -> CMS) | 04/02 - Conception du schéma de la carte |
Semaine 3 | 08/02 - Conception de la carte sous eagle | 10/02 - Conception de la carte et des librairies sous eagle | 11/02 - Conception de la carte et des librairies sous eagle |
Semaine x Vacances de février | X | Conception de la carte et des librairies sous eagle. Fin du schematic | X |
Semaine 4 | Modification schematic et librairies | Début routage et librairies | Routage et librairies |
Semaine 5 | Fin des librairies et Routage | Routage et test communication | routage et test communication |
Semaine 6 | Routage | Fin routage puis discution de la taille de la carte | Remaniement du routage pour que la carte soit suffisement petite |
Semaine 7 | Routage | Fin routage et design partie mécanique | Communication |
Semaine 8 | Communication | Communication | Communication |
Semaine 9 | férié | Programmation et partie mécanique | Programmation et partie mécanique |
Vacance | x | Soudure et partie mécanique | x |
Etude préalable
Conception carte électronique
Lors des deux premières semaines, nous avons fait essentiellement des recherches sur les composants pour concevoir notre carte et sur les mini robots déjà existant.
Carte électronique
D'après nos premières recherches, il faudrait que nous options pour une géométrie circulaire pour la base du robot, cette forme nous permet d'avoir l'aire la plus grande avec la forme la plus petite. De plus, Notre robot n'ayant pas besoin de faire beaucoup d'actions, et par besoin de maximiser la place nous allons essayer d'avoir notre carte électronique comme base du robot.
Pour la carte électronique, nous avions commencé par chercher des composants traversants, mais étant donné que nous voulons construire un robot le plus petit possible, nous avons modifié tous nos composants par des composants CMS pour optimiser la place. Dans le choix de nos composants, nous avons fait attention aux tensions de sortie afin d'avoir du 3V. Nous avons choisi nos composants de manière à ce qu'ils supportent ces 3V.
Le régulateur de tension
Ce régulateur va permettre d'obtenir une tension constante quelque soit l'état de la batterie.
Les moteurs vibreurs
Pour avoir un mouvement rectiligne, nous devrons positionner nos moteurs à égales distance du centre de gravité du robot. Pour ce faire, nous allons créer une pièce à l'imprimante 3D. Cette pièce aura plusieurs utilitées, dans un premier temps elle nous permettra de fixer la batterie sur le robot, puis nous disposerons nos moteurs de chaque côté de cette pièce afin qu'il soient à égales distance du centre de gravité de notre carte électronique. Ainsi, cette pièce aura donc les dimensions de notre batterie.
Placement des éléments
Pour le routage de la carte électronique, certains de nos composants doivent être positionnés à des emplacements bien spécifiques. Les émetteurs et les récepteurs doivent être positionnés tout autour du robot afin d'obtenir la meilleure communication possible. Nous avons choisi, de positionner nos 4 émetteurs aux différents points cardinaux, et nos récepteurs aux points cardinaux ainsi qu'entre ces derniers.
De plus, pour faciliter l'utilisation des robots, nous plaçons le micro USB au bord de la carte. Une fois, tout ces éléments placés nous avons positionné les autres éléments de manière à optimiser le routage de la carte.
Étant donné que certains de nos composants sont traversants et d'autres en CMS, nous pouvons faire du double face, ce qui nous simplifie un peu le routage.
Cependant, à la fin de ce premier routage, nous nous sommes rendus compte que notre carte était encore un peu grande. Nous avons choisi d'optimiser notre carte en recommençant le routage plutôt que de l'imprimer pour la tester. Certains des composants ont changé de places. Nous obtenons au final une carte électronique carré de 7cm de côté. Idéalement, nous aurions voulu une carte électronique circulaire puisque c'est la forme géométrique qui optimise le mieux l'espace. Étant à mi-parcours du projet, nous préférons rester sur notre carte carré qui optimise déjà un peu plus l'espace.
Nous avons reçu notre carte, nos limitations de pistes étaient légèrement trop petite et nous avons eu des bavures sur certaines pistes, pour y remédier, nous avons utiliser un scalpel pour creuser les pistes. Puis ayant de nombreux composants électroniques de type CMS, nous avons demandé à l'entreprise INODESIGN pour aller souder nos composants.
Communication entre les différents robots
Pour la communication de nos robots nous avons eu plusieurs idées. L'idée retenue est que chaque robot émettra à une fréquence propre. Ainsi, nous pourrons faire la différence entre les robots chasseurs et les autres robots.
Notre objectif est de pouvoir construire au minimum deux robots qui communiqueront ensemble. L'un sera le chasseur et essayera d’attraper le deuxième robot qui simulera par exemple une fourmi.
Test
Nous avons choisi comme communication, la communication par infrarouge. Pour cela nous avons utiliser une breadboard afin de vérifier que la communication est possible. Nous plaçons dans un premier temps, un récepteur ainsi qu'un émetteur face à face. Une LED Rouge devra s'allumer lorsqu la communication entre ces deux capteurs est interrompue. Ce test va nous permettre de connaître les limites de notre système de communication. Angle d'inclinaison, distance. -- Les tests A permettent de vérifier que cette communication marche correctement -- Les tests B permettent de vérifier la distance
En conclusion, nous pouvons utiliser cette communication pour nos robots. Il faudra cependant soigner la disposition de nos récepteurs et émetteurs pour qu'ils soient à la même hauteur. Nous avons de plus un angle de communication acceptable pour notre utilisation. En effet, nos robots ne font que vibrer, ils n'auront pas un angle de tangage très important. Nous avons une distance de communication entre nos deux robots d'environ 15 cm. Ce qui nous semble acceptable.
Code
//premiers prototypes
Partie mécanique
Notre projet nous impose d'avoir un robot le plus petit possible et à bas coûts. Nous avons choisi d'utiliser notre carte électronique comme base de notre robot. Comme nos robots doivent vibrer pour avancer, nous placerons des petites pattes métallique pour que le robot soit sur-élevé.
Pour alimenter nos robots, nous devrions avoir des batteries. Ces batteries sont cependant un peu grande (7 cm de longueur), mais c'était le format le moins cher. Pour fixer les batteries aux robots, on a décidé de créer une petite pièce imprimer à l'imprimante 3D du Fablab. Cette solution nous permettra de construire une pièce légère. Pour emboiter la carte électronique et notre pièce en 3D, nous avons percé la carte électronique à quatre endroits différents. Ces quatre trous de fixation ont été placés là où la carte électronique nous le permettait. Nous avons donc construit notre pièce 3D en fonction de ces 4 points de fixation.