IMA5 2021/2022 P28 : Différence entre versions

De Wiki de Projets IMA
(Liste du matériel)
(Semaine 3)
Ligne 153 : Ligne 153 :
  
 
[[Fichier:Relais_transistor.JPG|200px|thumb|center|Partie Relais de la matrice de commutation]]
 
[[Fichier:Relais_transistor.JPG|200px|thumb|center|Partie Relais de la matrice de commutation]]
 +
 +
En poursuivant la réflexion, il devrait être possible de placer le relais et le transistor en série. Le fonctionnement serait alors le suivant : lorsque VGS < VT, le transistor représentera un circuit ouvert donc aucun courant ne passe dans le transistor. Il passe donc par la diode de roue libre ce qui va faire décroitre le courant progressivement dans la bobine, ce qui entraine l'ouverture de l'interrupteur du relais. Dans le cas inverse, lorsque VGS > VT, le transistor représente un fil donc le courant passe dans le transistor, la bobine sera alors alimentée ce qui ferme l'interrupteur du relais.
 +
 +
[[Fichier:Relais_transistor_2.jpg|200px|thumb|center|Deuxième réflexion sur la partie Relais de la matrice de commutation]]
 +
 +
Le 2ème schéma ici semble plus approprié à ce que l'on souhaite réaliser. Il faudra réfléchir également au besoin d'ajouter ou non des résistances autour du transistor.
 +
 +
Le PCB sera réalisé en utilisant Altium. Sur le site comprenant les schématiques et empreintes des composants électroniques, il est actuellement impossible de télécharger les fichiers du transistor et des connecteurs Nucléo, je vais me lancer dans d'autres recherches pour des fichiers de ces composants.
  
 
==Semaine 4==
 
==Semaine 4==

Version du 6 octobre 2021 à 11:45


Présentation générale

Description

La crise de la Covid-19 et les différents confinements ou cours à distance ont montré les limites des outils disponibles pour de l’enseignement à distance ou pour les enseignements en dehors des temps dédiés. Par exemple, il est extrêmement difficile de réviser un TP ou de le terminer en dehors des heures d’enseignement car l’accès aux salles est compliquée, notamment les soirs ou les week-end.

Ce projet propose de réaliser une plateforme permettant d’accéder au matériel de TP à distance. La plateforme sera composée d’équipements supportant le protocole LXI. Une unité pourra contenir un générateur de fonction, une alimentation stabilisée, un multimètre et un oscilloscope. Tous les équipements sont reliés au travers d’un réseau Ethernet.

Objectifs

L'objectif de ce projet est de réaliser un POC complet d'un banc d'observation pour réaliser des TP à distance.

La réalisation de ce POC est décomposé en 3 parties :

  • une matrice de commutation permettant de relier différents montages expérimentaux aux appareils de mesures ;
  • une interface permettant l’accès à la plateforme de façon sécurisée et avec un planning avec réservation du/des banc(s) d'observation(s).

Préparation du projet

Cahier des charges

Fichier:CDC PI Louis Wadbled.pdf

Cahier des spécifications

Fichier:Cahier des specifications PI.pdf

Liste du matériel

Farnell :

30 Relais - https://fr.farnell.com/oeg-te-connectivity/oje-sh-105lmh-000/relais-puiss-5vdc-spst-no-8a-trav/dp/3397625

30 transistors Mosfet en CMS - https://fr.farnell.com/infineon/ipl60r360p6satma1/mosfet-canal-n-600v-11-3a-smd/dp/2726061?st=transistors%20mosfet

30 diodes équivalent 1N4001 en CMS - https://fr.farnell.com/rohm/rr1vwm4stftr/diode-aec-q101-1a-400v-cms/dp/2886628

10 connecteurs BNC - https://fr.farnell.com/molex/73100-0154/conn-coax-rf-bnc-femelle-50-ohms/dp/1909205

10 fiches bananes - https://fr.farnell.com/multicomp/24-243-3/fiche-femelle-ci-4mm-jaune/dp/1698985

2 nucleo F7 (avec écran ?) - https://fr.farnell.com/stmicroelectronics/nucleo-f767zi/carte-de-dev-nucleo-32-mcu/dp/2546569?st=nucleo%20f7 NUCLEO-F767ZI

5 MC14514BDWR2G (décodeurs) - https://fr.farnell.com/on-semiconductor/mc14514bdwr2g/verrou-transparent-decod-4-16/dp/2845025?ost=mc14514bdwr2g

5 cordons BNC - BNC - https://fr.farnell.com/schutzinger/ko-88-58-100-sw/cordon-de-test-bnc-male-1m/dp/3224334

5 cordons BNC - banane - https://fr.farnell.com/mh-connectors/bnc4mml1mrg58/cordon-de-test-1m/dp/3153514?st=cordons%20bnc%20bnc

10 cordons banane - banane https://fr.farnell.com/staubli/28-0124-100-21/cordon-test-noir-1m-1kv-32a/dp/152737?st=cordons%20banane%20banane

2 connecteurs Nucléo vers carte matrice 2 rangées n contacts - https://fr.farnell.com/samtec/tsw-135-08-t-d/conn-header-70-voies-2-rangs-2/dp/3585156

1 connecteur Nucléo vers RPi - https://fr.farnell.com/multicomp/2214s-40sg-85/connecteur-femelle-40-voies-2/dp/2847248

ESI :

switch ethernet type SWITCH TP−LINK TL−SG108E - https://shop.esipro.fr/produit/cuc-317368-tp-link-tl-sg108e-switch-metal-8-ports-gigabit-igmp-vlan-qos

HUB USB - https://shop.esipro.fr/produit/2-4783130-15m-usb-2-0-active-cable-with-4-port-hub

caméra usb

1 kit RPi - https://shop.esipro.fr/produit/cuc-151366-starter-kit-officiel-raspberry-pi-3-b

1 adaptateur serie USB - https://shop.esipro.fr/produit/3-2309416-adaptateur-port-hp-usb-vers-serie

Liste non exhaustive des tâches à effectuer

Interface Web

  • Création d'une BDD contenant : les logins des utilisateurs de la plateforme, les créneaux des bancs d'observations (réservés ou non) ;
  • Mise en place d'un serveur pour réaliser l'interface ;
  • Programmation des différentes pages de l'interface :
    • Page d'accueil (identification de l'utilisateur) ;
    • Page de réservation des bancs d'essai ;
    • Page d'utilisation du banc réservé.

Matrice de commutation

  • Lister le matériel ;
  • Réalisation du PCB de la matrice :
  • Souder la matrice ;
  • Programmation du contrôle de la matrice : une Raspberry Pi recevant les ordres du serveurs et un microcontrôleur qui contrôle la matrice ;
  • Réalisation des tests de la matrice.

Documentation

  • Ecriture de la documentation technique du POC.

Diagramme de Gantt

Voici le diagramme de Gantt prévisionnel du projet. Celui-ci sera mis régulièrement à jour selon les tâches effectuées et potentiellement les tâches à ajouter/modifier.

Diagramme de Gantt prévisionnel du projet (Mise à jour du 04/10/2021)

Réalisation du projet

Semaine 1

  • Réalisation du cahier des charges

Semaine 2

  • Réalisation du cahier des spécifications

Cette semaine marque également un début de réflexion concernant la matrice de commutation. Pour relier une entrée de la matrice avec une sortie, on souhaite utiliser des relais.

Premier schéma de la matrice de commutation

Comme on peut le voir sur le schéma rapide ci-dessus, les relais n'ont besoins que d'un interrupteur ouvert ou fermé, donc on pourra choisir des relais SPST (Single Pole Single Throw). De plus, je préfère choisir ici des relais normalement ouverts ce qui implique que l'on envoie un courant à la bobine simplement pour fermer l'interrupteur.

Les relais seront contrôlés par le microcontrôleur. On ajoute une diode de roue libre pour protéger la bobine du relais.

Ici, la matrice a été pensée pour lier 4 entrées et 4 sorties. Or pour réaliser le POC de la plateforme, on souhaite placer au minimum 3 appareils sur un banc d'observation, donc ce schéma n'est pas complet puisqu'il faudrait ajouter une entrée et une sortie (5 entrées pour les appareils déjà prêt à utilisation : 2 pour l'oscilloscope, 2 pour le multimètre et 1 pour le générateur de signaux).

On peut ensuite dresser un premier schéma de la plateforme. Cela permettra de réaliser la liste du matériel nécessaire notamment pour les connecteurs.

Le serveur pourra contrôler les appareils de mesures selon ce que l'utilisateur de l'interface Web souhaite grâce à leurs adresses IP. Pour contrôler la matrice de commutation, le serveur communiquera avec une Raspberry Pi qui transmet les informations au microcontrôleur de la matrice afin de modifier les états des relais pour associer les appareils de mesures avec les dispositifs de tests.

Premier schéma de la plateforme physique
  • Réalisation de la liste de matériel

Semaine 3

  • Réalisation du diagramme de Gantt

Afin de réaliser le PCB de la matrice, certains sites permettent de trouver les empreintes des composants électroniques. Il est possible d'utiliser :

De nouvelles réflexions ont lieu concernant la matrice de commutation avant de pouvoir réaliser le PCB. On ajoute ici un transistor MOSFET en commutation pour que la bobine du relais ne soit pas tout le temps alimentée. Le fonctionnement de ce transistor est le suivant : lorsque VGS < VT, le transistor représente un circuit ouvert donc la bobine sera alimentée (ce qui ferme l'interrupteur du relais); lorsque VGS > VT, le transistor représente un fil, donc la bobine ne sera pas alimentée (ce qui ouvre l'interrupteur du relais). VGS représente la tension grille-source et VT la tension de seuil du transistor.

Partie Relais de la matrice de commutation

En poursuivant la réflexion, il devrait être possible de placer le relais et le transistor en série. Le fonctionnement serait alors le suivant : lorsque VGS < VT, le transistor représentera un circuit ouvert donc aucun courant ne passe dans le transistor. Il passe donc par la diode de roue libre ce qui va faire décroitre le courant progressivement dans la bobine, ce qui entraine l'ouverture de l'interrupteur du relais. Dans le cas inverse, lorsque VGS > VT, le transistor représente un fil donc le courant passe dans le transistor, la bobine sera alors alimentée ce qui ferme l'interrupteur du relais.

Deuxième réflexion sur la partie Relais de la matrice de commutation

Le 2ème schéma ici semble plus approprié à ce que l'on souhaite réaliser. Il faudra réfléchir également au besoin d'ajouter ou non des résistances autour du transistor.

Le PCB sera réalisé en utilisant Altium. Sur le site comprenant les schématiques et empreintes des composants électroniques, il est actuellement impossible de télécharger les fichiers du transistor et des connecteurs Nucléo, je vais me lancer dans d'autres recherches pour des fichiers de ces composants.

Semaine 4

Semaine 5

Semaine 6

Semaine 7

Semaine 8

Documents rendus