IMA4 2017/2018 P12 : Différence entre versions
(→Réalisation du Projet) |
|||
Ligne 79 : | Ligne 79 : | ||
| 10 | | 10 | ||
| 8 | | 8 | ||
− | | | + | | 5 |
| | | | ||
| | | | ||
Ligne 93 : | Ligne 93 : | ||
==Séance 1== | ==Séance 1== | ||
− | Nous nous sommes | + | Nous nous sommes renseignés plus en détail sur les éléments de notre projet et notamment sur la montre. |
− | En effet, nous n'avions pas | + | En effet, nous n'avions pas pensé à vérifier qu'elle possédait une prise quelconque pour y brancher un casque car cela paraissait évident pour rendre la montre nécessaire. |
Après l'étude de la data sheet de la montre TI EZ430, nous nous sommes rendu compte qu'il n'y a en fait aucune prise (jack, usb, etc.) sur laquelle brancher notre casque. | Après l'étude de la data sheet de la montre TI EZ430, nous nous sommes rendu compte qu'il n'y a en fait aucune prise (jack, usb, etc.) sur laquelle brancher notre casque. | ||
Cela voudrait dire que l'ordinateur (ie l'interface) va envoyer une bande sonore à la montre et que celle-ci effectuera un simple relais en envoyant à son tour la bande sonore au casque. | Cela voudrait dire que l'ordinateur (ie l'interface) va envoyer une bande sonore à la montre et que celle-ci effectuera un simple relais en envoyant à son tour la bande sonore au casque. | ||
Ligne 100 : | Ligne 100 : | ||
Nous avons également pu avoir une piste sur les microcontrôleurs les plus adaptées à notre utilisation. En effet, notre dispositif doit être suffisamment petit et discret pour pouvoir être dissimuler. Les contraintes qui rentres donc en jeu sont : | Nous avons également pu avoir une piste sur les microcontrôleurs les plus adaptées à notre utilisation. En effet, notre dispositif doit être suffisamment petit et discret pour pouvoir être dissimuler. Les contraintes qui rentres donc en jeu sont : | ||
− | * Nombre de pins supérieur à | + | * Nombre de pins supérieur à 8 (pour le DAC et/ou le module Bluetooth) |
− | * Petit taille de batterie, donc MCU à faible consommation d'énergie | + | * Petit taille de batterie, donc MCU à faible consommation d'énergie |
− | * Fréquence d'horloge suffisante (à définir) | + | * Fréquence d'horloge suffisante (à définir) |
− | Après quelques recherches, nous nous sommes rendu compte que les microcontrôleurs | + | Après quelques recherches, nous nous sommes rendu compte que les microcontrôleurs Atmega ne sont pas adaptées à cet usage en vu de leurs consommations, mais la famille de microcontrôleurs STM32L (dit LOW POWER) sont un bon compromis entre performances et consommation. |
− | Nous avons aussi listé les composants | + | Nous avons aussi listé les composants électriques pour l'ostéophonie, nous avons décidé de tester plusieurs technologies. |
+ | D'après nos recherches, nous pouvons avoir des vibrations (transformation du signal électrique en vibration mécanique) soit en utilisant un moteur à courant continue, soit un transconducteur piézoélectrique. | ||
+ | Nous avons donc commandé trois capteurs piézoélectriques avec différentes fréquences de résonance pour essayer de couvrir les fréquences audibles, et un moteur à courant continue. | ||
==Séance 2== | ==Séance 2== | ||
− | Nous avons donc | + | Nous avons donc discuté avec M. Boé sur l'utilité de la montre. Il pensait qu'il y avait possibilité d'y ajouter un module pour stocker une bande sonore directement dessus par exemple. |
Cela aurait permis de se passer d'ordinateur et donc, de lancer une piste directement à partir de la montre mais cela n'est malheureusement pas possible. En effet, après vérification il n'y a pas de PIN libre. | Cela aurait permis de se passer d'ordinateur et donc, de lancer une piste directement à partir de la montre mais cela n'est malheureusement pas possible. En effet, après vérification il n'y a pas de PIN libre. | ||
− | Notre projet doit donc être modifié : nous devrons | + | Notre projet doit donc être modifié : nous devrons envoyer des informations depuis l'ordinateur au casque directement. |
Nous avons ensuite cherché les modules que nous devions utiliser pour le casque. En effet, nous avons besoin de choisir un composant de communication sans fil (Bluetooth, WiFi, Zigbee, etc.). | Nous avons ensuite cherché les modules que nous devions utiliser pour le casque. En effet, nous avons besoin de choisir un composant de communication sans fil (Bluetooth, WiFi, Zigbee, etc.). | ||
Pour notre application, nous cherchons à transmettre de la voix ainsi que de la musique. Pour la musique, il faudra cependant vérifier que la conduction osseuse permet d'entendre de la musique, d'avoir une qualité d'écoute suffisante. | Pour notre application, nous cherchons à transmettre de la voix ainsi que de la musique. Pour la musique, il faudra cependant vérifier que la conduction osseuse permet d'entendre de la musique, d'avoir une qualité d'écoute suffisante. | ||
− | Un fichier mp3 est souvent codé avec un débit de 128kbit/s (avec un MPEG-1 Layer III) car c'est un bon compromis : il permet d'avoir une bonne qualité par rapport au poids. | + | Un fichier mp3 est souvent codé avec un débit de 128kbit/s (avec un MPEG-1 Layer III) car c'est un bon compromis : il permet d'avoir une bonne qualité par rapport au poids du fichier. |
− | + | Il y a différent types de protocoles réseaux qui peuvent être utilisés : | |
*Le WiFi est un protocole qui consomme énormément d'énergie et qui est utile pour des débits très rapide sur des grandes distances, ce qui n'est pas notre cas. | *Le WiFi est un protocole qui consomme énormément d'énergie et qui est utile pour des débits très rapide sur des grandes distances, ce qui n'est pas notre cas. | ||
*Le Zigbee quant à lui peut théoriquement permettre du transfert à 250 kbits/s mais cette valeur ne représente pas le ''payload'' (les données utiles). En effet, il prendre en compte tous les bits de protocoles comme le CRC ou l'entête. | *Le Zigbee quant à lui peut théoriquement permettre du transfert à 250 kbits/s mais cette valeur ne représente pas le ''payload'' (les données utiles). En effet, il prendre en compte tous les bits de protocoles comme le CRC ou l'entête. | ||
Ligne 126 : | Ligne 128 : | ||
==Séance 3== | ==Séance 3== | ||
− | + | Comme précisé précédemment, le Bluetooth LE 4.2 étant conçu pour être utiliser pour de long moments de veilles et un faible volume de données, il ne permet pas d'avoir un débit net (troughput) supérieur à 128Kbits/s. Nous avons donc préféré utiliser un Bluetooth Classic 4.1 qui contient un DAC 12 bits intégré et un module IS2020 pour avoir de l'audio stéréo en sortie [http://www.microchip.com/wwwproducts/en/IS2020]. Le module Bluetooth que nous avons choisi est de classe 2, ce qui veut dire qu'il a une puissance de 2.5W et une porté d'une dizaine de mètres [http://www.tomshardware.fr/articles/bluetooth-technologie,2-526-3.html]. | |
+ | Nous avons aussi commandé une mémoire qui nous permettra de stoker le fichier audio dans le casque pour un deuxième mode d'utilisation ou cas où la transmission en Bluetooth streaming ne serai pas optimal. | ||
− | |||
==Séance 4== | ==Séance 4== | ||
Lors de cette séance nous avons utilisé le matériel de la salle C201 pour vérifier le fonctionnement d'une lamelle piézoélectrique et du moteur. | Lors de cette séance nous avons utilisé le matériel de la salle C201 pour vérifier le fonctionnement d'une lamelle piézoélectrique et du moteur. | ||
Ligne 137 : | Ligne 139 : | ||
Cela s'explique par le fait que plus la variation de tension est importante et plus le matériaux va vibrer et donc produire du son. | Cela s'explique par le fait que plus la variation de tension est importante et plus le matériaux va vibrer et donc produire du son. | ||
Nous avons ensuite testé de brancher directement la lamelle sur une sortie jack. | Nous avons ensuite testé de brancher directement la lamelle sur une sortie jack. | ||
− | Pour cela nous avons utiliser des simples écouteurs dont nous avons enlever les | + | Pour cela nous avons utiliser des simples écouteurs dont nous avons enlever les speakers (partie à mettre dans l'oreille) puis nous y avons souder la lamelle. |
+ | |||
Dans chacun de nos tests nous avons pu entendre du son par ostéophonie, les tests sont donc concluant mais à nuancer : | Dans chacun de nos tests nous avons pu entendre du son par ostéophonie, les tests sont donc concluant mais à nuancer : | ||
* Premièrement, le volume sonore est très faible comparer à des écouteurs classiques | * Premièrement, le volume sonore est très faible comparer à des écouteurs classiques | ||
Ligne 143 : | Ligne 146 : | ||
* Contrairement à nos attentes, il est parfaitement possible d'entendre le son directement par l'oreille auditif, c'est un problème car l'objectif est de laissé le champ auditif libre pour d'autres sons. | * Contrairement à nos attentes, il est parfaitement possible d'entendre le son directement par l'oreille auditif, c'est un problème car l'objectif est de laissé le champ auditif libre pour d'autres sons. | ||
− | Pour la prochaine séance l'objectif est | + | Pour la prochaine séance, l'objectif est d'ajouter à notre montage un amplificateur pour pouvoir entendre le son à un volume bien moindre. Pour cela, nous devrons prendre des mesures lors de la prochaine séance pour voir la tension nécessaire pour que le son soit à un niveau agréable lors de l'écoute. |
+ | Remarque : l'inconvénient d'augmenter le volume sonore des lamelles est que l'on entendra également bien mieux le son même sans le coller à un os ce qui n'est pas ce qui est voulu, il faudra donc trouver le bon équilibre. | ||
=====Moteur===== | =====Moteur===== | ||
− | Nous n'avons pas | + | Nous n'avons pas réussi à faire fonctionné le moteur que nous avions mais nous avons trouvé d'autres moteurs que nous essaierons lors de la prochaine séance. |
==Séance 5== | ==Séance 5== | ||
− | Nous avons continué les tests avec plusieurs moteurs et | + | Nous avons continué les tests avec plusieurs moteurs et le transducteur piézo déjà disponible. |
+ | Le piézo que nous possédons déjà fonctionne à 30Vpp max et résonne à 4200±500Hz. Nous disposons également de plusieurs moteurs à courant continu de taille différentes et donc sans doute de puissances différentes. Malheureusement, les caractéristiques techniques ne sont cependant pas indiqués mais ces moteurs peuvent nous permettre d'avoir une bonne idée du fonctionnement d'un moteur en but auditif. | ||
+ | il génère du son audible en plus des vibrations, mais reste discret. Les moteurs eux, ont un plus faible rendement, ils consomment plus, et la puissance de sortie reste faible. Dans les deux cas, nous aurons besoin d'un d'amplifier le signal avant de le passer au moteur ou au piézo. | ||
=Documents Rendus= | =Documents Rendus= |
Version du 1 février 2018 à 08:33
Sommaire
Présentation générale
Description
La communication osseuse est un type d'écoute qui permet de ne pas passer par le système auditif externe. Le système auditif externe n'est donc pas encombré ce qui offre de nouvel possibilité d'écoute.Ainsi, ce système peut se rendre très utile utile pour les personnes sourdes ainsi que pour n'importe qui ayant besoin d’être attentif au bruit environnant tel que les militaires ou les ouvriers. Le système ostéophonique que nous allons utiliser va être utilisé avec une communication à distance qui lui enverra les informations à faire écouter à l'utilisateur.
Objectifs
L’objectif de notre projet est de réaliser un système de communication par ostéophonie (communication osseuse). Une montre connecté servira de passerelle entre le casque et une interface (ordinateur ou appareil embarqué type Raspberry). Il enverra à la montre des informations sonores : musiques, conversation vocale, etc. C’est ensuite la montre qui sera chargé de transmettre l’information au dispositif d’écoute ostéophonique.
Notre objectif sera de réaliser un casque fonctionnel qui pourra communiquer à distance. Ce casque devra respecter une certaine qualité d'écoute et de conforme. Enfin, nous devrons nous attacher à trouver le meilleur système de communication afin d'économiser l'énergie et d'optimiser le transfert des données.
Analyse du projet
Positionnement par rapport à l'existant
Notre objectif est de réaliser un appareil moins couteux que la concurrence. En effet, ce type de produit est vendu très chère par rapport à des dispositifs auditifs classiques. Tout comme les produits existants, il nous sera nécessaire de parvenir à transmettre du son par conduction osseuse. Pour cela nous devrons étudier les différents composants convertissant l'information sonore en vibration. Il sera également intéressant de tester l'emplacement idéal ou poser l'émetteur afin d'avoir le meilleur son possible : mâchoire, tempe, arrière du crâne. d’étudier les différents types de communication à distance: Bluetooth, wifi, radio.
Analyse du premier concurrent
Le premier concurrent est l'entreprise audilo qui commercialise à la fois des casques audio à conduction osseuse et des appareils d'aide à l'audition. Contrairement à cette entreprise nous allons faire en sorte de créer un produit bien moins cher pour la clientèle. En effet, actuellement ces casques sont vendus à partir de 80 euros. Ils utilisent la technologie Bluetooth pour communiquer, nous essayerons d'avoir une vitesse et qualité optimale afin d'avoir quelque chose de comparable aux casque déjà existant à ces prix.
Il sera intéressant par exemple de s'intéresser à la dernière version du Bluetooth pour sa qualité. Au vue des modules piézoélectriques, ils ne vont pas, dans les conditions normal d'utilisation, dans les fréquences hautes entendu par les humains ce qui peut être un problème pour l'écoute de musique ou de son de haute qualité.
Analyse du second concurrent
Le deuxième concurrent est Bose, c'est un constructeur de casques de haute qualité. Notre casque utilisera la technologie osseuse pour fonctionner et comme on ne peut pas placer le capteur directeur sur un os la qualité est moins bonne que pour un casque normal. Cependant, notre casque aura l'avantage de laisser les oreilles libres pour les utilisateurs qui souhaitent entendre en même temps l'environnement ou d'autres personnes.
Notre casque sera destiné à une utilisation plus nomade que des casques Bose qui sont plus destiné à des professionnels ou alors à des utilisateurs voulant une grande qualité d'écoute. Enfin, notre casque sera réalisé pour être bien moins cher que cette marque.
Scénario d'usage du produit ou du concept envisagé
Lors d'un tour de mentalisme, un magicien devra deviner plusieurs cartes les yeux bandées. Son assistant devra donc lui communiquer à chaque fois la réponse via un système de communication par ostéophonie dissimulé dans le foulard du magiciens.
Réponse à la question difficile
- Quel sont les os les plus sensibles à l'ostéophonie ?
=> Le crâne, et principalement les os en contact avec l'oreille interne, et notamment la mâchoire (Mandibule), et la tempe (L'os Temporale) sont des os qui sont très proche de la peau. Nous allons devoir tester une fois le casque fonctionnel avec quel os cela fonctionne le mieux.
Préparation du projet
Cahier des charges
Le cahier des charges imposé contient quelques impératifs :
- Casque permettant d'émettre du son par ostéophonie
- La montre Texas Instrument est imposé et sera relié filairement au casque / oreillette
- Une communication à distance avec un ordinateur ou Raspberry est également imposé
Malgré tout, la majorité des éléments nous sont laissés libres :
- Nous pouvons choisir la méthode de conversion de l'information sonore en vibration pour la conduction osseuse : transconducteur ostéophonique, moteur à rotation, etc.
- Il nous est également nécessaire de choisir sur quel os se placer pour transmettre au mieux le son; des tests sont donc à réaliser.
- La méthode de communication nous est également laissé libre : Wifi, Bluetooth, Radio.
Choix techniques : matériel et logiciel
Liste des tâches à effectuer
Calendrier prévisionnel
Réalisation du Projet
Feuille d'heures
Tâche | Prélude | Heures S1 | Heures S2 | Heures S3 | Heures S4 | Heures S5 | Heures S6 | Heures S7 | Heures S8 | Heures S9 | Heures S10 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Analyse du projet | 0 | 10 | 8 | 5 |
Prologue
Séance 1
Nous nous sommes renseignés plus en détail sur les éléments de notre projet et notamment sur la montre. En effet, nous n'avions pas pensé à vérifier qu'elle possédait une prise quelconque pour y brancher un casque car cela paraissait évident pour rendre la montre nécessaire. Après l'étude de la data sheet de la montre TI EZ430, nous nous sommes rendu compte qu'il n'y a en fait aucune prise (jack, usb, etc.) sur laquelle brancher notre casque. Cela voudrait dire que l'ordinateur (ie l'interface) va envoyer une bande sonore à la montre et que celle-ci effectuera un simple relais en envoyant à son tour la bande sonore au casque. La montre ne semble donc pas être indispensable pour notre projet. Pour le savoir nous discuterons avec un enseignant pour en savoir plus.
Nous avons également pu avoir une piste sur les microcontrôleurs les plus adaptées à notre utilisation. En effet, notre dispositif doit être suffisamment petit et discret pour pouvoir être dissimuler. Les contraintes qui rentres donc en jeu sont :
- Nombre de pins supérieur à 8 (pour le DAC et/ou le module Bluetooth)
- Petit taille de batterie, donc MCU à faible consommation d'énergie
- Fréquence d'horloge suffisante (à définir)
Après quelques recherches, nous nous sommes rendu compte que les microcontrôleurs Atmega ne sont pas adaptées à cet usage en vu de leurs consommations, mais la famille de microcontrôleurs STM32L (dit LOW POWER) sont un bon compromis entre performances et consommation.
Nous avons aussi listé les composants électriques pour l'ostéophonie, nous avons décidé de tester plusieurs technologies. D'après nos recherches, nous pouvons avoir des vibrations (transformation du signal électrique en vibration mécanique) soit en utilisant un moteur à courant continue, soit un transconducteur piézoélectrique. Nous avons donc commandé trois capteurs piézoélectriques avec différentes fréquences de résonance pour essayer de couvrir les fréquences audibles, et un moteur à courant continue.
Séance 2
Nous avons donc discuté avec M. Boé sur l'utilité de la montre. Il pensait qu'il y avait possibilité d'y ajouter un module pour stocker une bande sonore directement dessus par exemple. Cela aurait permis de se passer d'ordinateur et donc, de lancer une piste directement à partir de la montre mais cela n'est malheureusement pas possible. En effet, après vérification il n'y a pas de PIN libre. Notre projet doit donc être modifié : nous devrons envoyer des informations depuis l'ordinateur au casque directement.
Nous avons ensuite cherché les modules que nous devions utiliser pour le casque. En effet, nous avons besoin de choisir un composant de communication sans fil (Bluetooth, WiFi, Zigbee, etc.). Pour notre application, nous cherchons à transmettre de la voix ainsi que de la musique. Pour la musique, il faudra cependant vérifier que la conduction osseuse permet d'entendre de la musique, d'avoir une qualité d'écoute suffisante. Un fichier mp3 est souvent codé avec un débit de 128kbit/s (avec un MPEG-1 Layer III) car c'est un bon compromis : il permet d'avoir une bonne qualité par rapport au poids du fichier. Il y a différent types de protocoles réseaux qui peuvent être utilisés :
- Le WiFi est un protocole qui consomme énormément d'énergie et qui est utile pour des débits très rapide sur des grandes distances, ce qui n'est pas notre cas.
- Le Zigbee quant à lui peut théoriquement permettre du transfert à 250 kbits/s mais cette valeur ne représente pas le payload (les données utiles). En effet, il prendre en compte tous les bits de protocoles comme le CRC ou l'entête.
- Ainsi avec Zigbee on atteint au maximum un throughput de 912 bits/s (throughput représente le payload diviser par le temps complet pour l'échange de donnée, ie transfert et réception)[1].
- Le Bluetooth v4.0/4.1 permet un throughput de 305kbits/s et le v4.2 permet quand à lui d'atteindre 803 kbits/s[2].
- (remarque : on parle ici du Bluetooth 4 Classic et non du Bluetooth 4 Low Energy qui n'est pas du tout conçu pour ça)
Étant donné le débit correspondant au mp3 nous nous tournons donc vers cette alternative car le débit est suffisant pour notre utilisation.
Nous avons également besoin d'un DAC (Digital to Analogic Converter) car une fois l'information numérique reçu par le module wireless, nous devons le convertir en analogique pour transmettre les vibrations correspondantes.
Séance 3
Comme précisé précédemment, le Bluetooth LE 4.2 étant conçu pour être utiliser pour de long moments de veilles et un faible volume de données, il ne permet pas d'avoir un débit net (troughput) supérieur à 128Kbits/s. Nous avons donc préféré utiliser un Bluetooth Classic 4.1 qui contient un DAC 12 bits intégré et un module IS2020 pour avoir de l'audio stéréo en sortie [3]. Le module Bluetooth que nous avons choisi est de classe 2, ce qui veut dire qu'il a une puissance de 2.5W et une porté d'une dizaine de mètres [4].
Nous avons aussi commandé une mémoire qui nous permettra de stoker le fichier audio dans le casque pour un deuxième mode d'utilisation ou cas où la transmission en Bluetooth streaming ne serai pas optimal.
Séance 4
Lors de cette séance nous avons utilisé le matériel de la salle C201 pour vérifier le fonctionnement d'une lamelle piézoélectrique et du moteur.
Lamelle piézoélectrique
Nous avons première fait des tests avec un générateur de signaux. Comme vu sur internet le signal qui émet le plus de son est le signal carré (puis le triangle et en fin le plus faible est le sinus). Cela s'explique par le fait que plus la variation de tension est importante et plus le matériaux va vibrer et donc produire du son. Nous avons ensuite testé de brancher directement la lamelle sur une sortie jack. Pour cela nous avons utiliser des simples écouteurs dont nous avons enlever les speakers (partie à mettre dans l'oreille) puis nous y avons souder la lamelle.
Dans chacun de nos tests nous avons pu entendre du son par ostéophonie, les tests sont donc concluant mais à nuancer :
- Premièrement, le volume sonore est très faible comparer à des écouteurs classiques
- Ensuite, le volume sonore dépend beaucoup de l'endroit placer : il est le plus fort lorsque la lamelle est mordu entre les dents, il est également assez élevé au dessus de la tempe
- Contrairement à nos attentes, il est parfaitement possible d'entendre le son directement par l'oreille auditif, c'est un problème car l'objectif est de laissé le champ auditif libre pour d'autres sons.
Pour la prochaine séance, l'objectif est d'ajouter à notre montage un amplificateur pour pouvoir entendre le son à un volume bien moindre. Pour cela, nous devrons prendre des mesures lors de la prochaine séance pour voir la tension nécessaire pour que le son soit à un niveau agréable lors de l'écoute. Remarque : l'inconvénient d'augmenter le volume sonore des lamelles est que l'on entendra également bien mieux le son même sans le coller à un os ce qui n'est pas ce qui est voulu, il faudra donc trouver le bon équilibre.
Moteur
Nous n'avons pas réussi à faire fonctionné le moteur que nous avions mais nous avons trouvé d'autres moteurs que nous essaierons lors de la prochaine séance.
Séance 5
Nous avons continué les tests avec plusieurs moteurs et le transducteur piézo déjà disponible. Le piézo que nous possédons déjà fonctionne à 30Vpp max et résonne à 4200±500Hz. Nous disposons également de plusieurs moteurs à courant continu de taille différentes et donc sans doute de puissances différentes. Malheureusement, les caractéristiques techniques ne sont cependant pas indiqués mais ces moteurs peuvent nous permettre d'avoir une bonne idée du fonctionnement d'un moteur en but auditif. il génère du son audible en plus des vibrations, mais reste discret. Les moteurs eux, ont un plus faible rendement, ils consomment plus, et la puissance de sortie reste faible. Dans les deux cas, nous aurons besoin d'un d'amplifier le signal avant de le passer au moteur ou au piézo.